Skip to main content

Topology and Knowledge of Multiple Agents

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 5290)

Abstract

A multi-agent version of Moss and Parikh’s logic of knowledge and effort is developed in this paper. This is done with the aid of particular modalities identifying the agents involved in the system in question. Throughout the paper, special emphasis is placed on foundational issues.

Keywords

  • knowledge of agents
  • epistemic logic
  • topological reasoning
  • spatial logics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-88309-8_1
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-88309-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Nebel, B., Rich, C., Swartout, W. (eds.) Principles of Knowledge Representation and Reasoning (KR 1992), San Mateo, CA, pp. 165–176. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  2. McKinsey, J.C.C.: A solution to the decision problem for the Lewis systems S2 and S4, with an application to topology. Journal of Symbolic Logic 6, 117–141 (1941)

    CrossRef  MathSciNet  Google Scholar 

  3. Nutt, W.: On the translation of qualitative spatial reasoning problems into modal logics. In: Burgard, W., Christaller, T., Cremers, A.B. (eds.) KI 1999. LNCS (LNAI), vol. 1701, pp. 113–125. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  4. Aiello, M., van Benthem, J., Bezhanishvili, G.: Reasoning about space: The modal way. Journal of Logic and Computation 13, 889–920 (2003)

    MATH  CrossRef  MathSciNet  Google Scholar 

  5. Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowledge. In: Moses, Y. (ed.) Theoretical Aspects of Reasoning about Knowledge (TARK 1992), Los Altos, CA, pp. 95–105. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  6. Aiello, M., Pratt-Hartmann, I.E., van Benthem, J.F.A.K.: Handbook of Spatial Logics. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  7. Georgatos, K.: Knowledge theoretic properties of topological spaces. In: Masuch, M., Polos, L. (eds.) Logic at Work 1992. LNCS (LNAI), vol. 808, pp. 147–159. Springer, Heidelberg (1994)

    Google Scholar 

  8. Pacuit, E., Parikh, R.: The logic of communication graphs. In: Leite, J.A., Omicini, A., Torroni, P., Yolum, p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 256–269. Springer, Heidelberg (2005)

    Google Scholar 

  9. Meyer, J.J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science. Cambridge Tracts in Theoretical Computer Science, vol. 41. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  10. Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic manifesto. Logic Journal of the IGPL 8, 339–365 (2000)

    MATH  CrossRef  MathSciNet  Google Scholar 

  11. Blackburn, P., van Benthem, J., Wolter, F.: Handbook of Modal Logic. Studies in Logic and Practical Reasoning, vol. 3. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  12. Dabrowski, A., Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowledge. Annals of Pure and Applied Logic 78, 73–110 (1996)

    MATH  CrossRef  MathSciNet  Google Scholar 

  13. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  14. Goldblatt, R.: Logics of Time and Computation, 2nd edn. CSLI Lecture Notes, vol. 7. Center for the Study of Language and Information, Stanford (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heinemann, B. (2008). Topology and Knowledge of Multiple Agents. In: Geffner, H., Prada, R., Machado Alexandre, I., David, N. (eds) Advances in Artificial Intelligence – IBERAMIA 2008. IBERAMIA 2008. Lecture Notes in Computer Science(), vol 5290. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88309-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88309-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88308-1

  • Online ISBN: 978-3-540-88309-8

  • eBook Packages: Computer ScienceComputer Science (R0)