Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Surveys 31, 264–323 (1999)
CrossRef
Google Scholar
Forgy, E.W.: Cluster Analysis of Multivariate Data: Efficiency vs. Interpretability of Classifications. Biometrics 21, 768–780 (1965)
Google Scholar
Selim, S.Z., Ismail, M.A.: K-means-type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality. IEEE Transaction on Pattern Analysis and Machine Intelligence 6, 81–87 (1984)
MATH
CrossRef
Google Scholar
Rayward-Smith, V.J.: Metaheuristics for Clustering in KDD. In: IEEE Congress on Evolutionary Computation, vol. 3, pp. 2380–2387 (2005)
Google Scholar
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220, 671–680 (1983)
CrossRef
MathSciNet
Google Scholar
Klein, R.W., Dubes, R.C.: Experiments in Projection and Clustering by Simulated Annealing. Pattern Recognition 22, 213–220 (1989)
MATH
CrossRef
Google Scholar
Selim, S.Z., Alsultan, K.: A Simulated Annealing Algorithm for the Clustering Problem. Pattern Recognition 24, 1003–1008 (1991)
CrossRef
MathSciNet
Google Scholar
Murty, C.A., Chowdhury, N.: In Search of Optimal Clusters using Genetic Algorithms. Pattern Recognition Letter 17, 825–832 (1996)
CrossRef
Google Scholar
Hall, L.O., Özyurt, I.B., Bezdek, J.C.: Clustering with a Genetically Optimized Approach. IEEE Transaction on Evolutionary Computation 3, 103–112 (1999)
CrossRef
Google Scholar
Alsultan, K.: A Tabu Search Approach to the Clustering Problem. Pattern Recognition 28, 1443–1451 (1995)
CrossRef
Google Scholar
Merwe, D.W., Engelbrecht, A.P.: Data Clustering using Particle Swarm Optimization. In: Congress on Evolutionary Computation, vol. 1, pp. 215–220 (2003)
Google Scholar
Kanade, P.M., Hall, L.O.: Fuzzy Ants Clustering by Centroid Positioning. In: IEEE International Conference on Fuzzy Systems, vol. 1, pp. 371–376 (2004)
Google Scholar
Babu, G.P., Murty, M.N.: Simulated Annealing for Optimal Initial Seed Selection in K-means Algorithm. Indian Journal of Pure and Applied Mathematics 3, 85–94 (1994)
Google Scholar
Su, T., Dy, J.: A Deterministic Method for Initializing K-means Clustering. In: IEEE International Conference on Tools with Artificial Intelligence, pp. 784–786 (2004)
Google Scholar
Arthur, D., Vassilvitskii, S.: K-means++: The Advantages of Careful Seeding. In: Symposium on Discrete Algorithms (2007)
Google Scholar
Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)
Google Scholar
Friedman, M.: The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance. Journal of the American Statistical Association 32, 675–701 (1937)
CrossRef
Google Scholar
Friedman, M.: A Comparison of Alternative Tests of Significance for the Problems of m Rankings. Annals of Mathematical Statistics 11, 86–92 (1940)
MATH
CrossRef
MathSciNet
Google Scholar
Nemenyi, P.B.: Distribution-free Multiple Comparisons. PhD thesis. Princeton University (1963)
Google Scholar