Skip to main content

Geodesic Generative Topographic Mapping

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 5290)

Abstract

Nonlinear dimensionality reduction (NLDR) methods aim to provide a faithful low-dimensional representation of multivariate data. The manifold learning family of NLDR methods, in particular, do this by defining low-dimensional manifolds embedded in the observed data space. Generative Topographic Mapping (GTM) is one such manifold learning method for multivariate data clustering and visualization. The non-linearity of the mapping it generates makes it prone to trustworthiness and continuity errors that would reduce the faithfulness of the data representation, especially for datasets of convoluted geometry. In this study, the GTM is modified to prioritize neighbourhood relationships along the generated manifold. This is accomplished through penalizing divergences between the Euclidean distances from the data points to the model prototypes and the corresponding geodesic distances along the manifold. The resulting Geodesic GTM model is shown to improve not only the continuity and trustworthiness of the representation generated by the model, but also its resilience in the presence of noise.

Keywords

  • Geodesic Distance
  • Nonlinear Dimensionality Reduction
  • Miss Data Imputation
  • Generative Topographic Mapping
  • Unsupervised Feature Selection

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-88309-8_12
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-88309-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, C.M., Svensén, M., Williams, C.K.I.: The Generative Topographic Mapping. Neural Computation 10(1), 215–234 (1998)

    CrossRef  Google Scholar 

  2. Vellido, A.: Missing data imputation through GTM as a mixture of t-distributions. Neural Networks 19(10), 1624–1635 (2006)

    MATH  CrossRef  Google Scholar 

  3. Vellido, A., Lisboa, P.J.G., Vicente, D.: Robust analysis of MRS brain tumour data using t-GTM. Neurocomputing 69(7-9), 754–768 (2006)

    CrossRef  Google Scholar 

  4. Olier, I., Vellido, A.: Advances in clustering and visualization of time series using GTM Through Time. Neural Networks (accepted for publication)

    Google Scholar 

  5. Archambeau, C., Verleysen, M.: Manifold constrained finite Gaussian mixtures. In: Cabestany, J., Gonzalez Prieto, A., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 820–828. Springer, Heidelberg (2005)

    Google Scholar 

  6. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    CrossRef  Google Scholar 

  7. Lee, J.A., Lendasse, A., Verleysen, M.: Curvilinear Distance Analysis versus Isomap. In: Proceedings of European Symposium on Artificial Neural Networks (ESANN), pp. 185–192 (2002)

    Google Scholar 

  8. Bernstein, M., de Silva, V., Langford, J., Tenenbaum, J.: Graph approximations to geodesics on embedded manifolds. Technical report, Stanford University, CA (2000)

    Google Scholar 

  9. Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische Mathematik 1, 269–271 (1959)

    MATH  CrossRef  MathSciNet  Google Scholar 

  10. Venna, J., Kaski, S.: Neighborhood preservation in nonlinear projection methods: An experimental study. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 485–491. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  11. Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer, New York (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cruz-Barbosa, R., Vellido, A. (2008). Geodesic Generative Topographic Mapping. In: Geffner, H., Prada, R., Machado Alexandre, I., David, N. (eds) Advances in Artificial Intelligence – IBERAMIA 2008. IBERAMIA 2008. Lecture Notes in Computer Science(), vol 5290. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88309-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88309-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88308-1

  • Online ISBN: 978-3-540-88309-8

  • eBook Packages: Computer ScienceComputer Science (R0)