Advertisement

Grundlagen und Technik der Brachytherapie

  • P. Fritz
  • S.L. Roth
  • R. Pötter
  • F.W. Hensley
  • K. Muskalla
  • K.-J. Weber
  • M. Wannenmacher
  • H.-N. Macha
  • J. Dimopoulos
Chapter

Zusammenfassung

Die Brachytherapie nutzt den steilen Dosisabfall in unmittelbarer Nähe des Strahlers aus, um räumlich eng begrenzte Dosisverteilungen zu erzeugen. Auf diese Weise kann in vielen Fällen eine hohe Dosis direkt an das Zielgebiet gebracht werden.

Literatur

Zu Gerätetechnik, Applikationsarten, Radionuklide und Dosisleistungsdefinitionen

  1. Barendsen GW (1982) Dose, fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 8:1981–1999PubMedGoogle Scholar
  2. Bentzen SM (1993) Quantitative clinical radiobiology. Acta Oncol 32:259–275PubMedGoogle Scholar
  3. Brenner DJ, Hall EJ (1991) Conditions for the equivalence of continuous to pulsed low dose rate brachytherapy. Int J Radiat Oncol Biol Phys 20:181–190PubMedGoogle Scholar
  4. Cohen L (1949) Clinical radiation dosage, Pt II. Br J Radiol 22:706–713PubMedGoogle Scholar
  5. DIN 6809 (1993) Teil 3: Klinische Dosimetrie. Brachytherapie mit umschlossenen gammastrahlenden radioaktiven Stoffen. Deutsches Institut für Normung, BerlinGoogle Scholar
  6. DIN 6827 (2002) Teil 3: Protokollierung bei der medizinischen Anwendung ionisierender Strahlung. Teil 3: Brachytherapie mit umschlossenen Strahlungsquellen. Deutsches Institut für Normung, BerlinGoogle Scholar
  7. Douglas BG, Fowler JF (1976) The effect of multiple small doses of X-rays on skin reactions in the mouse and a basic interpretation. Radiat Res 66:401–426PubMedGoogle Scholar
  8. Dutreix A, Marinello G, Wambersie A (1982) Dosimetrie en Curietherapie. Masson, ParisGoogle Scholar
  9. Ellis F (1969) Dose, time and fractionation; a clinical hypothesis. Clin Radiol 20:1–7PubMedGoogle Scholar
  10. Fowler JF (1971) Experimental animal results relating time-dose relationships in radiotherapy and the ‘ret’ concept. Br J Radiol 44:81–90PubMedGoogle Scholar
  11. Fowler JF (1984) What next in fractionated radiotherapy? Br J Cancer 49(Suppl VI):285–300Google Scholar
  12. Fowler JF (1989) The radiobiology in brachytherapy. In: Martinez AA, Orton CG, Mould RF (eds) Brachytherapy HDR and LDR. Proceedings Brachytherapy Meeting 1989, Dearborn, Michigan, USA. Nucletron, Ax Veenendal, NiederlandeGoogle Scholar
  13. Fowler JF, Mount M (1992) Pulsed brachytherapy: the conditions for no significant loss of therapeutic ratio compared with traditional low dose rate brachytherapy. Int J Radiat Oncol Biol Phys 23:661–669PubMedGoogle Scholar
  14. Fritz P, Hensley FW, Berns C, Schraube P, Wannenmacher M (1996) First experiences with superfractionated skin irradiations using large afterloading molds. Int J Radiat Oncol Biol Phys 36:147–157PubMedGoogle Scholar
  15. Fritz P, Weber KJ, Frank C, Flentje M (1996) Differential effects of dose-rate and superfractionation on survival and cell-cycle of V79 cells from spheroid and monolayer culture. Radiother Oncol 39:73–79PubMedGoogle Scholar
  16. Glasser O, Quimby EH, Morgan RH (1961) Physical Foundations of Radiology 3. Aufl. Harper & Row, Evanston New YorkGoogle Scholar
  17. Hall EJ, Brenner DJ (1991) The dose-rate effect revisited: radiobiological considerations of importance in radiotherapy. Int J Radiat Oncol Biol Phys 21:1403–1414PubMedGoogle Scholar
  18. Henschke, NK, Hilaris BS, Mahan GD (1984) Remote afterloading with intracavitary applicators. Radiology 83:344–345Google Scholar
  19. Hibbits KR, Raeside DE, Adams GD, Bogardus CR, Darrow BA (1981) Optimal radiotherapy treatment planing for carcinoma of the cervix uteri. Radiology 138:215–217Google Scholar
  20. Hilaris BS, Anderson LL (1985) Atlas of Brachytherapy. Macmillan, New YorkGoogle Scholar
  21. ICRU 38 (1985) International Commission on Radiation Units and Measurements. Dose and volume specification for reporting intracavitary therapy in gynecology. Vol. 38. International Commission on Radiation Units and Measurements, Bethseda, MD, pp 1–23Google Scholar
  22. ICRU 50 (1993) International Commission on Radiational Units. Prescribing, recording and reporting photon beam therapy. Report No. 50. ICRU Publications, Washington DCGoogle Scholar
  23. ICRU 58 (1997) International Commission on Radiational Units. Dose and volume specifications for reporting interstital therapy. Report No. 58. ICRU Publications, Washington DCGoogle Scholar
  24. Joiner MC (1993) The linear-quadratic approach to fractionation: In G Gordon Steel: Basic clinical radiobiology. E. Arnold Publishers, London, pp 55–64Google Scholar
  25. Meredith WJ (1967) Radium Dosage: The Manchester System. Livingston, EdinburghGoogle Scholar
  26. Orton CG (2001) High-dose-rate brachytherapy may be radiobiologically superior to low dose rate due to slow repair of late-responding normal tissue cells. Int J Radiat Oncol Biol Phys 49:183–189PubMedGoogle Scholar
  27. Orton CG, Ellis F (1973) A simplification in the use of the NSD concept in practical radiotherapy. Br J Radiol 46:529–537PubMedGoogle Scholar
  28. Orton CG, Seyedsar M, Somnay A (1991) Comparison of high and low dose rate remote afterloading for cervix cancer and the importance of fractionation. Int J Radiat Oncol Biol Phys 21:1425–1434PubMedGoogle Scholar
  29. Strandquist M (1944) Studien über die kumulative Wirkung der Rönt-genstrahlen bei Fraktionierung. Acta Radiol 55 (Suppl):1–300Google Scholar
  30. Thames HD, Withers HR, Peters LJ, Fletcher GH (1982) Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int J Radiat Oncol Phys 8:219–226Google Scholar
  31. Thames HD (1985) An ‘incomplete-repair’ model for survival after fractionated and continuous irradiation. Int J Radiat Biol 47:319–339Google Scholar
  32. Thames HD, Bentzen SM, Turesson I, Overgaard M, van den Bogaert W (1990) Time-dose factors in radiotherapy: a review of the human data. Radiother Oncol 19:219–235PubMedGoogle Scholar
  33. Trott KR, Kummermehr J (1993) The time factor and repopulation in tumors and normal tissues. Sem Radiat Oncol 3:115–125Google Scholar
  34. Withers HR, Thames HD, Peters LJ (1982) Differences in the fractionation response of acutely and late-reacting tissues. In: Karcher et al. (eds) Progress in Radio-Oncology, Vol II. Raven Press, New York, p 287Google Scholar
  35. Withers HR (1993) Treatment-induced accelerated human tumor growth. Sem Radiat Oncol 3:135–143Google Scholar
  36. Yudelev M, Kuten A, Tatcher M, Rubinov R, Karmell B, Chen Y, Robinson E (1986) Correlations of dose and time-dose-fractionation factors (TDF) with treatment results and side effects in cancer of the uterine cervix. Gynecol Oncol 23:310–315PubMedGoogle Scholar

Zu Bestrahlungsplanung der Brachytherapie

  1. Dittler HJ (1990) Laser- und Afterloading-Therapie: Oesophaguscarcinom. Langenbecks Arch Chir (Suppl II):185–191Google Scholar
  2. Fritz P, Schraube P, Oberle J, Wannenmacher M, Friedl P (1992) Perkutan-endokavitäre Strahlenbehandlung der Ösophaguskarzinome. Strahlenther Onkol 168:154–161PubMedGoogle Scholar
  3. Fritz P, Wannenmacher M (1997) Die Strahlenbehandlung in der multimodalen Therapie des Ösophaguskarzinoms. Strahlenther Onkol 173(6):295–308PubMedGoogle Scholar
  4. Gaspar LE, Nag S, Herskovic A, Mantravadi R, Speiser B and the Clinical Research Committee, American Brachytherapy Society, Philadelphia (1997) American Brachytherapy Society (ABS) consensus guidelines for brachytherapy of esophageal cancer. Int J Radiat Oncol Biol Phys 38 (No 1):127–132PubMedGoogle Scholar
  5. Gaspar LE, Winter K, Kocha WI, Coja LR, Herskovic A, Graham M (2000) A phase I/II study of external beam radiation brachytherapy, and concurrent chemotherapy for patients with localized carcinoma of the esophagus (Radiation Therapy Oncology Group Study 9207). Cancer 88 (No 5): 988–995PubMedGoogle Scholar
  6. Guisez J (1935) Malignant tumors of the esophagus. J Laryngol Otol 40:213–232Google Scholar
  7. Hareyama M, Nishio M, Kagami Y, Narimatsu N, Saito A, Sakurai T (1992) Intracavitary brachytherapy combined with external-beam irradiation for squamous cell carcinoma of the thoracic esophagus. Int J Radiat Oncol Biol Phys 24:235–240PubMedGoogle Scholar
  8. Hishikawa Y, Kurisu K, Taniguchi M, Kamikonya N, Miura T (1991) High-dose-rate intraluminal brachytherapy for esophageal cancer: 10 years experience in Hyogo College of Medicine. Radiother Oncol 21:107–114PubMedGoogle Scholar
  9. Hishikawa Y, Izumi M, Kurisu K, Taniguchi M, Kamikonya N (1993) Esophageal ulceration following high-dose-rate intraluminal brachytherapy for esophageal cancer. Radiother Oncol 28:252–254PubMedGoogle Scholar
  10. Homs MYV, Eijkenboom WMH, Coen VLMA, Haringsma J, van Blankenstein M, Kuipers EJ, Siersema PD (2003) High dose rate brachytherapy for the palliation of malignant dysphagia. Radiother Oncol 66:327–332PubMedGoogle Scholar
  11. Homs MY, Steyerberg EW, Eijkenboom WM et al. (2004) Singledose brachytherapy versus metal stent placement for the palliation of dysphagia from oesophageal cancer: multicentre randomised trial. Lancet 364:1497–1504PubMedGoogle Scholar
  12. Jager JJ, Pannebakker M, Rijken J, de Vos J, Vismans JFFE (1992) Palliation in esophageal cancer with a single session of intraluminal irradiation. Radiother Oncol 25:134–136PubMedGoogle Scholar
  13. Kumar MU, Swamy K, Supe SS, Anantha N (1993) Influence of intraluminal brachytherapy dose on complications in the treatment of esophageal cancer. Int J Radiat Oncol Biol Phys 27:1069–1072PubMedGoogle Scholar
  14. Miao YJ, Gu XZ, Hu YM et al. (1982) Intracavitary irradiation in the treatment of esophageal cancer. Chin J Oncol 4:45–47. Zitiert in: Subir Nag (ed) (1994) High dose rate brachytherapy: a textbook. Futura Publishing Company, New YorkGoogle Scholar
  15. Mücke R, Ziegler PG, Libera T, Klautke G, Fietkau R (2000) Multimodale Therapie des fortgeschrittenen inoperablen Ösophaguskarzinom. Eine retrospektive Analyse. Strahlenther Onkol 176 (8):350–355PubMedGoogle Scholar
  16. Nakajima T, Fukuka H, Hosono M et al. (1992) Intraluminal irradiation for T2M0 esophageal cancer: effect of patient selection on prognosis. Radiat Med 10:123–128PubMedGoogle Scholar
  17. Okawa T, Dokiya T, Nishio M, Hishikawa Y, Morita K and Japanese Society of Therapeutic Radiology and Oncology (JASTRO) Study Group (1999) Multi-Institutional randomized trial of external radiotherapy with and without intraluminal brachytherapy for esophageal cancer in Japan. Int J Radiat Oncol Biol Phys 45, 3:623–628PubMedGoogle Scholar
  18. Pakisch B, Kohek P, Stücklschweiger G et al. (1990) Ein Therapiekonzept zur Behandlung inoperabler Ösophaguskarzinome. Strahlenther Onkol 166:247–250PubMedGoogle Scholar
  19. Rowland CG, Pagliero KM (1985) Intracavitary irradiation in palliation of carcinoma of oesophagus and cardia. Lancet 2:981–983PubMedGoogle Scholar
  20. Savage AP, Baigrie RJ, Cobb RA, Barr H, Kettlewell MGW (1997) Palliation of malignant dysphagia by laser therapy. Dis Esophagus 10:243–246PubMedGoogle Scholar
  21. Schwegler U, Orth M, Kuntz HD, May B (1989) Endoskopische Palliativtherapie maligner Ösophagus- und Kardiastenosen. Ergebnisse – Komplikationen – Katamnesen. Bildgebung/Imaging 56:69–75Google Scholar
  22. Tanisada K, Teshima T, Ikeda H, Mitsuyuki A et al. (2000) A preliminary outcome analysis of the patterns of care study in Japan for esophageal cancer patients with special reference to age: non surgery group. Int J Radiat Oncol Biol Phys 46 (No 5):1223–1233PubMedGoogle Scholar
  23. Wei-bo Yin (1988) Brachytherapy of carcinoma of the oesophagus in China. In: Mould RF: Proceedings of the 5th International Selectron Users’ Meeting, The Hague, The Netherlands. Nucletron, Ax Veenendal, Niederlande, pp 439–441Google Scholar
  24. Yorozu A, Dokiya T, Oki Y (1999) Curative radiotherapy with high-dose-rate brachytherapy boost for localized esophageal carcinoma: Dose-effect relationship with the balloon type applicator system. Radiother Oncol 51 (No 2):133–139PubMedGoogle Scholar
  25. Zhao, Rui-fen (1990) Combination of external irradiation and intracavitary cesium-37 radiotherapy for esophageal carcinoma. Chin J Radiat Oncol Phys Biol 2:85–87. Zitiert in: Subir Nag (ed) (1994) High dose rate brachytherapy: a textbook. Futura Publishing Company, New YorkGoogle Scholar

Zu Strahlentherapie des Zervixkarzinoms

  1. Alvarez RD, Soong SJ, Kinney WK (1989) Identification of prognostic factors and risk groups in patients found to have nodal metastasis at the time of radical hysterectomy for early-stage squamous carcinoma of the cervix. Gynecol Oncol 35:130–135PubMedGoogle Scholar
  2. Arbeitsgemeinschaft der wissenschaftlichen, medizinischen Fachgesellschaften (2004) Interdisziplinäre Leitlinie der Deutschen Krebsgesellschaft e.V. (DKG) und der Deutschen Gesellschaft für Gynäkologie und Geburtshilfe (DGGG) AWMF-Leitlinien-Register Nr. 032/033: Diagnostik und Therapie des Zervixkarzinoms. www.AWMF.de
  3. Atlan D, Touboul E, Deniaud-Alexandre E, Lefranc JP (2002) Operable stages IB and II cervical carcinomas: a retrospective study comparing preoperative uterovaginal brachytherapy and postoperative radiotherapy. Int J Radiat Ther Oncol Biol Phys 54:780–793Google Scholar
  4. Ballon SC, Bermann ML, Lagtisse LD (1981) Survival after extraperitoneal pelvic and paraaortic lymphadenectomy and radiation therapy. Obstet Gynecol 57:90–95PubMedGoogle Scholar
  5. Baltzer J, Lohe KJ, Köpcke W, Zander J (1982) Histological criteria for the prognosis in patients with operated squamous cell carcinoma of the cervix. Gynecol Oncol 13:184PubMedGoogle Scholar
  6. Baltzer J, Köpcke W, Lohe KJ, Kaufmann C, Ober KG, Zander J (1984) Die operative Behandlung des Zervixkarzinoms. Geburtsh Frauenheilk 4:279–285Google Scholar
  7. Barendsen GW (1982) Dose, fractionation, dose rate and isoeffect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 8:1981–1997PubMedGoogle Scholar
  8. Beckmann MW (2003) Von Standards, Leitlinien und Richtlinien und deren Einfluss auf das tägliche medizinische Handeln. Frauenarzt 44:950–954Google Scholar
  9. Beckmann MW (2004) S2-Leitlinien Diagnostik und Therapie des Zervixkarzinoms. Zuckschwerdt, DarmstadtGoogle Scholar
  10. Bentzen SM (1993) Quantitative clinical radiobiology. Acta Oncol 32:259–275PubMedGoogle Scholar
  11. Bellomi M, Bonomo G, Landoni F (2005) Accuracy of computer tomography and magnetic resonance imaging in the detection of lymph node involvement in cervix carcinoma. Eur Radiol 15 (12):2469–2474PubMedGoogle Scholar
  12. Benedet JL, Odicino F, Maisonneuve P (2003) Cacinoma of the cervix uteri. In: FIGO annual report on the results of treatment in gynaecological cancer. Int J Gynaecol Obstet 83 (Suppl 1):41–78PubMedGoogle Scholar
  13. Berek JS, Hacker NF, Fu YS (1985) Adenocarcinoma of the uterine cervix: Histologic variables associated with lymph node metastases and survival. Obstet Gynecol 65:46PubMedGoogle Scholar
  14. Bleker OP, Ketting BW, Van Wayien-Eecen B, Kloosterman GJ (1983) The significance of microscopic involvement of the parametrium and/or pelvic lymph nodes in cervical cancer stages IB and IIA. Gynecol Oncol 16:56–62PubMedGoogle Scholar
  15. Böcking A, Motherby H (1999) Abklärung zervikaler Dysplasien mittels dna-Bild-Zytometrie. Pathologe 20:25–33PubMedGoogle Scholar
  16. Buchsbaum JH, Lifshitz S (1976) The role of scalene lymph node biopsy in advanced carcinoma of the cervix uteri. Surg Gynecol Obstet 143:246PubMedGoogle Scholar
  17. Burghardt E, Pickel H, Haas J (1985) Prognostische Faktoren und operative Behandlung des Zervixkarzinoms. In: Burghardt E (Hrsg) Spezielle Gynäkologie und Geburtshilfe. Springer, Berlin Heidelberg New York, S 72Google Scholar
  18. Busch M, Meden H, Meibodi F (1999) Long term results of definitive radiotherapy for cervical carcinoma using four applications of high dose rate afterloading. Cancer 86: 1520–1527PubMedGoogle Scholar
  19. Campodonico I, Escudere P, Suarez E (1985) Carcinoma of the cervix uteri. In: Petterson F, Kolstad P, Ludwig H, Ulfelder H (eds) Annual report on the results of treatment in gynecological cancer. Tryckeri Balder AB, StockholmGoogle Scholar
  20. Chen SW, Liang JA, Yang SN (2000) The prediction of late rectal complications following the treatment of uterine cervical cancer by high-dose-rate brachytherapy. Int J Rad Oncol Biol Phys 47:955–961Google Scholar
  21. Clark BG, Souhami L, Roman TN (1997) The prediction of late rectal complications in patients treated with high-dose-rate brachytherapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys 38:989–993PubMedGoogle Scholar
  22. Chen SW, Liang JA, Yang SN, Liu RT, Lin FJ (2000) The prediction of late rectal complications following the treatment of uterine cervical cancer by high-dose-rate brachytherapy. Int J Radiat Oncol Biol Phys 47:955–961PubMedGoogle Scholar
  23. Currie DW (1971) Operative treatment of carcinoma of the cervix. Br J Obstet Gynaecol 78:385–405Google Scholar
  24. Dargent D, Martin X, Sacchetoni A, Methevet P (2000) Laparoscopic vaginal radical tracheolectomy: a treatment to preserve the fertility of cervical carcinoma patients. Cancer 15:1877–1882Google Scholar
  25. Delgado G (1978) Stage Ib squamous cancer of the cervix: the choice of treatment. Obstet Gynecol Surv 33:174–183PubMedGoogle Scholar
  26. DIN 6827 (2002) Protokollierung bei der medizinischen Anwendung ionisierender Strahlung. Deutsches Institut für Normung, BerlinGoogle Scholar
  27. Di Saia PJ (1981) Surgical aspects of cervical carcinoma. Cancer 48:548–559Google Scholar
  28. Dimopoulos J, Schard G, Berger D et al. (2006) Systematic evaluation of MRI findings in different stages of treatment of cervical cancer: potential of MRI on delineation of target, patho-anatomical structures and organs at risk. Int J Radiation Oncology Biol Phys 1; 64(5):1380–1388Google Scholar
  29. Dunst J, Haensgen G (2001) Simultaneous radiochemotherapy in cervical cancer: recommendations for chemotherapy. Strahlenther Onkol 177:635–640PubMedGoogle Scholar
  30. Dunst J, Kuhnt T, Strauss HG, Krause U, Pelz T, Koebl H, Haensgen G (2003) Anemia in cervical cancers: impact on survival, patterns of relapse, and association with hypoxia and angiogenesis. Int J Radiat Oncol Biol Phys 56:778–787PubMedGoogle Scholar
  31. Eifel P, Morris M, Oswald M (1990) Adenocarcinoma of the uterine cervix: Prognosis and patterns of failure of 367 cases treated at the M. D. Anderson Cancer Center between 1965 and 1985. Cancer 65:2507–2514PubMedGoogle Scholar
  32. Eifel P, Moughan J, Erickson B, Iarocci T, Grant D, Owen J (2003) Pattern of radiotherapy practice for patients with carcinoma of the cervix (1996–1999): a patterns-of-care study. Int J Radiat Oncol Biol Phys 57:190Google Scholar
  33. Einhorn N, Patek E, Sjöberg B (1985) Outcome of different treatment modalities in cervix carcinoma stage Ib and IIa. Cancer 55:949–955PubMedGoogle Scholar
  34. Fletcher GH, Wharton JT, Rutledge F (1980) Adjunctive surgical procedures with irradiation therapy for carcinoma of the cervix. In: Fletcher GH (ed) Textbook of radiotherapy. Lea and Febiger, Philadelphia, pp 773–789Google Scholar
  35. Fowler JF (1989) Dose rate effects in normal tissues. In: Mould RF (ed) Brachytherapy. Nucletron, Ax Veenendal, NiederlandeGoogle Scholar
  36. Fowler JF (1984) What next in fractionated radiotherapy? Br J Cancer 49(Suppl VI):285–300Google Scholar
  37. Fuller AF, Elliott BS, Kosloff MS, Hoskins WJ, Lewis JL (1989) Determinants of increased risk for recurrence in patients undergoing radical hysterectomy for stage IB and IIB carcinoma of the cervix. Gynecol Oncol 33:34–39PubMedGoogle Scholar
  38. Gerbaulet A, Pötter R, Haie-Meder C (2002) Cervic cancer. In: Gerbaulet A, Pötter R, Mazeron JJ et al. (eds) The GEC ESTRO handbook of brachytherapy. ESTRO, Brüssel, pp 301–363Google Scholar
  39. Ghosh K, Padilla L, Murray K (2001) Using a belly board device to reduce the small bowel volume within pelvic radiation fields in women with postoperatively treated cervical carcinoma. Gynecol Oncol 83:271–275PubMedGoogle Scholar
  40. Girardi F, Lichtenegger W, Tamussino K, Haas J (1989) The importance of parametrial lymph nodes in the treatment of cervical cancer. Gynecol Oncol 34:206–211PubMedGoogle Scholar
  41. Green JA, Kirwan JM, Tierny JF, Symonds P, Freso L, Collingwood M, Willia CJ (2001) Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix: a systematic review and meta-analysis. Lancet 358:781–786PubMedGoogle Scholar
  42. Grote HJ, Friedrichs N, Pomjanski N, Guhde HF, Reich O, Böcking A (2001) Prognostic significance of dna cytometry in carcinoma of the uterine cervix FIGO stage IB and II. Analytical Cellular Pathology 23:97–105PubMedGoogle Scholar
  43. Gusberg SB, Shingleton HM (1988) Diagnosis and treatment of cancer of the cervix. In: Gusberg SB, Shingleton HM, Deppe G (eds) Female genital cancer. Churchill, Livingstone New York Edinburgh LondonGoogle Scholar
  44. Hacker NE, Berek JS, Lagtisse LD (1982) Cervical cancer in pregnancy. Obstet Gynecol 59:735PubMedGoogle Scholar
  45. Haie C, Pajovic MC, Gerbaulet A, Horiot JC (1988) Is prophylactic paraaortic irradiation worthwhile in the treatment of advanced cervical carcinoma? Results of a controlled clinical trial of the EORTC radiotherapy group. Radiother Oncol 11:101–112PubMedGoogle Scholar
  46. Haie-Meder C, Pötter R, Van Limbergen E et al. (2005) Recommendations from gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol 74(3):235–245PubMedGoogle Scholar
  47. Hänsgen G, Kuhnt T, Pigorsch S, Strauss H, Dunst J (2002) Adjuvant simultaneous radiochemotherapy after operated uterine cervix carcinoma in high risk situation. Results of a pilot study. Strahlenther Onkol 178:71–77PubMedGoogle Scholar
  48. Haie C, Pajovic MD, Gerbaulet A, Horiot JC (1988) Is prophylactic paraaortic irradiation worthwhile in the treatment of advanced cervical carcinoma? Results of a controlled clinical trial of the EORTC radiotherapy group. Radiother Oncol 11:101–112PubMedGoogle Scholar
  49. Haie-Meder C, Potter R, Van Limbergen E et al. (2005) Gynaecological (GYN) GEC-ESTRO Working Group: Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol 74:235–245PubMedGoogle Scholar
  50. Hamberger AD, Fletcher GH, Wharton JT (1978) Results of treatment of early stage I carcinoma of the uterine cervix with intracavitary radium alone. Cancer 41:980–985PubMedGoogle Scholar
  51. Hanks GE, Herring DF, Kramer S (1983) Pattern of care outcome studies: Results of the national practice in carcinoma of the cervix. Cancer 51:959–967PubMedGoogle Scholar
  52. Haroske G, Baak JPA, Danielsen H et al. (2001) Fourth updated ESACP consensus report on diagnostic dna image cytometry. Analytical Cellular pathology 23:89–95PubMedGoogle Scholar
  53. Hibbits KR, Raeside DE, Adams GD, Bogardus CR, Darrow BA (1981) Optimal radiotherapy treatment planning for carcinoma of the cervix uteri. Radiology 138:215–217Google Scholar
  54. Hong JH, Tsai Lai CS, Chang CH, Wang TC, Lee CC, Tseng SP, Hsueh CJ (2002) Postoperative low-pelvic irradiation for stage I-IIA cervical cancer patients with risk factors other than pelvic lymph node metastasis. Int J Radiat Oncol Biol Phys 53:1284–1290PubMedGoogle Scholar
  55. Horiot JC, Pigneux J, Pourquier H et al. (1988) Radiotherapy alone in carcinoma of the intact uterine cervix according to G.H. Fletcher guidelines: a french cooperative study of 1383 cases. Int J Radiat Oncol Biol Phys 14:605–611PubMedGoogle Scholar
  56. Inoue T, Chihara T, Morita K (1986) Postoperative extended field irradiation in patients with pelvic and/or common iliac node metastasis from cervical carcinoma stages Ib to IIb. Gynecol Oncol 25:234PubMedGoogle Scholar
  57. ICRU Report 38 (1985) Dose and volume specification for reporting intracavitary therapy in gynaecology. International Commission on Radiation Units and Measurements, Bethesda, MD, pp 1–23Google Scholar
  58. Joiner MC (1993) The linear-quadratic approach to fractionation: In: Gordon Steel G (ed) Basic clinical radiobiology. E. Arnold Publishers, London, pp 55–64Google Scholar
  59. Käser O, Iklé FA, Hirsch HA (1983) Atlas der gynäkologischen Operationen. Thieme, Stuttgart New YorkGoogle Scholar
  60. Keys HM, Bundy BN, Stehman FB et al. (1999) Cisplatin, radiation, and adjuvant hysterectomy compared with radiation and adjuvant hysterectomy for bulky stage IB cervical carcinoma. N Engl J Med 340:1154–1161PubMedGoogle Scholar
  61. Kindermann G, Maasen V (1988) Die Ausbreitung des Zervixkrebses. In: Käser O, Friedberg V, Ober KG, Thomsen K, Zander J (Hrsg) Gynäkologie und Geburtshilfe Band 111, Teil 2. Thieme, Stuttgart New YorkGoogle Scholar
  62. Kirisits C, Potter R, Lang S, Dimopoulos J, Wachter-Gerstner N, Georg D (2005) Dose and volume parameters for MRI-based treatment planning in intracavitary brachytherapy for cervical cancer. Int J Radiat Oncol Biol Phys 62(3): 901–911PubMedGoogle Scholar
  63. Kjorstad KE (1977) Adenocarcinoma of the uterine cervix. Gynecol Oncol 5:219PubMedGoogle Scholar
  64. Kuipers T (1984) High dose-rate intracavitary irradiation: results of treatment. Mould RF (ed) Brachytherapy Proc. of 3rd Int. Selectron users meeting. Selectron: 169–175Google Scholar
  65. Ladner HA (1990) Strahlentherapie des Zervixkarzinoms in Freiburg. In: Teufel G, Pfleiderer A, Ladner HA (Hrsg) Therapie des Zervixkarzinoms. Springer, Berlin Heidelberg New York TokioGoogle Scholar
  66. Landoni F, Maneo A, Colombo A, Placa F, Milani R, Perego P, Favini G, Ferri L, Mangioni C (1997) Randomised study of radical surgery versus radiotherapy for stage I–IIa cervical cancer. Lancet 23:535–540Google Scholar
  67. Lee YN, Wang KL, Lin MH, Liu CH, Wang KG (1989) Radical hysterectomy with pelvic lymph node dissection for treatment of cervical cancer: a clinical review of 954 cases. Gynecol Oncol 32:135–142PubMedGoogle Scholar
  68. Lei ZZ, He FZ (1989) External cobalt 60 irradiation alone for stage IIb carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys 16:339–341PubMedGoogle Scholar
  69. Logsdon MD, Eifel PJ (1999) FIGO IIIB squamous cell carcinoma of the cervix: an analysis of prognostic factors emphasizing the balance between external beam and intracavitary radiation therapy. Int J Radiat Oncol Biol Phys 43:763–775PubMedGoogle Scholar
  70. Lohe KJ (1978) Early squamous cell carcinoma of the uterine cervix. 1. Definition and histology. Gynecol Oncol 12:10Google Scholar
  71. Lorvidhaya V, Tonusin A, Changiwit W et al. (2000) High-dose-rate afterloading brachytherapy in carcinoma of the cervix: an experience of 1992 patients. Int J Radiat Oncol Biol Phys 46:1185–1191PubMedGoogle Scholar
  72. Marciale P, Atlante G, Le Pera V, Marino T, Pozzi M, Iacovelli A (1981) Combined radiation and surgical treatment of stages IB and IIA and B carcinoma of the cervix. Gynecol Oncol 11:175–183Google Scholar
  73. Masubuchi K, Tenjin Y, Kubo H, Kimura M (1969) Five year cure rate for carcinoma of the cervix uteri. Am J Obstet Gynecol 103:566PubMedGoogle Scholar
  74. Morris M, Eifel PJ, Lu J et al. (1999) Pelvic radiation with concurrent chemotherapy compared with pelvic and paraaortic radiation for high-risk cervical cancer. N Engl J Med 340:1137–1143PubMedGoogle Scholar
  75. NACCCMA (2004) Neoadjuvant chemotherapy for cervical cancer metaanalysis collaboration. Cochrane Library Issue 2Google Scholar
  76. Noguchi H, Shiozawa K, Tsukamoto T, Tsukahara Y, Iwai S, Fukuta T (1983) The postoperative classification for uterine cervical cancer and its clinical evaluation. Gynecol Oncol 16:219–231PubMedGoogle Scholar
  77. Orton CG, Ellis F (1973) A simplification of the NSD concept in practical radiotherapy. Brit J Radiol 46:529PubMedGoogle Scholar
  78. Orton CG, Seyedsar M, Somnay A (1991) Comparison of high and low dose rate remote afterloading for cervix cancer and the importance of fractionation. Int J Radiat Oncol Biol Phys 21:1425–1434PubMedGoogle Scholar
  79. Park C (1981) Cervical carcinoma in pregnancy. Obstet Gynecol 58:584PubMedGoogle Scholar
  80. Park W, Park YJ, Huh SJ et al. (2005) The usefulness of MRI and PET imaging for the detection of parametrial involvement and lymph node metastasis in patients with cervical cancer. Jpn J Clin Oncol 35:260–264PubMedGoogle Scholar
  81. Perez C, Kao M (1985) Radiation therapy alone or combined with surgery in the treatment of barrel-shaped carcinoma of the uterine cervix (stages Ib, IIa, IIb). Int J Radiat Oncol Biol Phys 11:1903–1909PubMedGoogle Scholar
  82. Perez CA, Kuske RR, Camel HM, Galaktos AE, Hederman MA, Kao MS, Walz BJ (1988) Analysis of pelvic tumor control and impact on survival in carcinoma of the uterine cervix treated with radiation therapy alone. Int J Radiat Oncol Biol Phys 14:613–621PubMedGoogle Scholar
  83. Perez CA, Grigsby PW, Lockett MA (1999) Radiation morbidity in carcinoma of the uterine cervix: dosimetric and clinical correlation. Int J Radiat Oncol Biol Phys 44:855–866PubMedGoogle Scholar
  84. Pesch B, Halekoh U, Ranft U, Richter M, Pott F (1994) Atlas zur Krebssterblichkeit in Nordrhein-Westfalen. Ministerium für Arbeit, Gesundheit und Soziales des Landes Nordrhein-Westfalen, DüsseldorfGoogle Scholar
  85. Petereit DG, Pearcy RG (1999) Literature analysis of high dose rate brachytherapy fractionation schedules in the treatment of cervical cancer: is there an optimal fractionation schedule? Int J Radiat Oncol Biol Phys 43:359–366PubMedGoogle Scholar
  86. Petereit DG, Fowler JF (Editorial) (2003) High-dose-rate brachytherapy – high-dose, high-tech, and high results. Int J Radiat Oncol Biol Phys 55:1159–1161PubMedGoogle Scholar
  87. Peters WA 3rd, Liu PY, Barrett RJ 2nd et al. (2000) Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix. J Clin Oncol 18:1606–1613PubMedGoogle Scholar
  88. Petterson F (1990) Behandlungsergebnisse des Zervixkarzinoms. Erkenntnisse aus dem FIGO-Jahresbericht. In: Teufel G, Pfleiderer A, Ladner HA (Hrsg) Therapie des Zervixkarzinoms. Springer, Berlin Heidelberg New York TokioGoogle Scholar
  89. Piver MS, Barlow JJ, Krishnamsetty R (1981) Five-year survival (with no evidence of disease) in patients with biopsy-confirmed aortic node metastasis from cervical carcinoma. J Obstet Gynecol 193:575Google Scholar
  90. Piver MS, Marchetti DL, Patton T, Halpein J, Blumenson L, Driscoll DL (1988) Radical hysterectomy and pelvic lymphadenectomy versus radiation therapy for small (< 3 cm) stage lb cervical carcinoma. Am J Clin Oncol 11:21PubMedGoogle Scholar
  91. Pourquier H (1975) Epitheliomas du col uterin: radio-curietherapie exclusive. J Gynecol Obstet Biol Reprod 4:1109–1120Google Scholar
  92. Pötter R, Knocke TH, Fellner C et al. (2000) Definitive radiotherapy based on HDR brachytherapy with Iridium-192 in cervix cancer – report on the recent Vienna University Hospital experience (1993–1997) compared to the preceding period, referring to ICRU 38 recommendations. Bull Cancer Radiother 4:159–172Google Scholar
  93. Pötter R (2002) Modern imaging in brachytherapy. In: Gerbaulet A, Pötter R, Mazeron JJ, Meertens H, Van Limbergen E (eds) The GEC ESTRO handbook of brachytherapy. European Society of Therapeutic Radiology and Oncology, Brüssel, pp 123–151Google Scholar
  94. Pötter R, Gerbaulet A, Haie-Meder C (2002) Endometrial cancer. In: Gerbaulet A, Pötter R, Mazeron JJ, Meertens H, Van Limbergen E (eds) The GEC ESTRO handbook of brachytherapy. European Society of Therapeutic Radiology and Oncology, Brüssel, pp 365–401Google Scholar
  95. Pötter R, Haie-Meder C, Van Limbergen E et al. (2006) Recommendations from Gynaecological (GYN) GEC ESTRO Working Group (II): concepts and terms in 3D image based treatment planning in cervix cancer brachytherapy: aspects of 3D imaging, radiation physics, radiobiology, and 3D dose volume parameters. Radiother and Oncol 78(1):67–77Google Scholar
  96. Pötter R, Dimopoulos J, Bachtiary B et al. (2006) 3D conformal HDR brachy- and external beam therapy plus simultaneous Cisplatin for high-risk cervical cancer: clinical experience with 3 year follow-up. Epub Mar 3. Radiother Oncol 79(1):80–86PubMedGoogle Scholar
  97. Pötter R, Dimopoulos J, Georg P et al. (2006) Impact of systematic MRI assisted 3D treatment planning on local control and morbidity in cervix cancer: Vienna experience in 145 patients treated by intracavitary ± interstitial brachytherapy during 1998–2003. Submitted to N Engl J Med 2006Google Scholar
  98. Regato JA, Spjut HJ (1977) Female genital organs/cervix. In: Ackermann LV, del Regato JA (eds) Cancer 5th ed. Mosby, St. LouisGoogle Scholar
  99. Rose PG, Bundy BN, Watkins EB et al. (1999) Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med 340:1144–1153PubMedGoogle Scholar
  100. Roth SL (1993) Das Zervixkarzinom. In: Roth SL, Böttcher HD (Hrsg) Gynäkologische Strahlentherapie. Enke, Stuttgart, S 14–46Google Scholar
  101. Rotman M, Pajak TF, Choi K et al. (1995) Prophylactic extended-field irradiation of paraaortic lymph nodes in stages IIB and bulky IB and IIA cervical carcinomas. Ten-year treatment results of RTOG 79–20. JAMA 274:427–428Google Scholar
  102. Scully RE, Bonfiglio TA, Kurmann RJ, Silverberg SG, Wilkinson EJ (1994) WHO International histological classification of tumours: histological typing of female genital tract tumours, 2nd edn. Springer, Berlin Heidelberg New York TokioGoogle Scholar
  103. Sedlis A, Bundy BN, Rotman MZ et al. (1999) A randomized trial of pelvic radiation therapy versus no further therapy in selected patients with stage IB carcinoma of the cervix after radical hysterectomy and pelvic lymphadenectomy: a Gynecologic Group Study. Gynecol Oncol 73:177–183PubMedGoogle Scholar
  104. Servin BU, Averette HE (1987) Pelvic exenteration: an editorial response. Cancer Invest 5:377–378Google Scholar
  105. Shingleton HM, Gore H, Bradley DH, Soong SJ (1981) Adenocarcinoma of the cervix. 1. Clinical evaluation and pathologic features. Am J Obstet Gynecol 139:799PubMedGoogle Scholar
  106. Smit BJ, Du Toit JP, Groenewald WA (1989) An indwelling intrauterine tube to facilitate high dose rate indwelling intracavitary therapy for carcinoma of the cervix. Brit J Radiol 62:68–69PubMedGoogle Scholar
  107. Stitt JA, Fowler JF, Thomadsen BR et al. (1992) High dose rate intracavitary brachytherapy for carcinoma of the cervix: The Madison system: I. Clinical and radiobiological considerations. Int J Radiat Onclol Biol Phys 24:335–348Google Scholar
  108. Taina E, Grönroos M (1981) A comparison of the clinical results following high-dose-rate intracavitary afterloading irradiation with Co-60 (Cathetron) and conventional radium therapy for stage I-II cervical carcinoma. Acta Obstet Gynecol Scand (Umea) (Suppl) 103:31–38Google Scholar
  109. Teufel G, Nestle U, Senst A, Kaufmehl K, Kleine W, Pfleiderer A (1990) Ist die Radikaloperation im Stadium IIb zu rechtfertigen? In: Teufel G, Pfleiderer A, Ladner HA (Hrsg) Therapie des Zervixkarzinoms. Springer, Berlin Heidelberg New York TokioGoogle Scholar
  110. Teshima T, Chatani M, Hata K, Inoue T (1987) High-dose rate intracavitary therapy for carcinoma of the uterine cervix: 1. General findings of survival and complication. Int J Radiat Oncol Biol Phys 13:1035–1041PubMedGoogle Scholar
  111. Thames HD, Withers HR, Peters LJ, Fletcher GH (1982) Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int J Radiat Oncol Phys 8:219–226Google Scholar
  112. Thames HD, Bentzen SM, Turesson I, Overgaard M, van den Bogaert W (1990) Time-dose factors in radiotherapy: a review of the human data. Radiother Oncol 19:219–235PubMedGoogle Scholar
  113. Thomas GM, Dembo AJ, Beale F (1984) Concurrent radiation, mitomycin-C and 5-FU in poor prognosis carcinoma of the cervix: preliminary results of a Phase 1–11 study. Int J Radiat Oncol Phys 10:1785Google Scholar
  114. Thomas GM, Dembo AJ (1991) Is there a role for adjuvant pelvic radiotherapy after radical hysterectomy in early stage cervical cancer? Int J Gynecol Cancer 1:1–8Google Scholar
  115. Twiggs LB, Potish RA, George RJ, Adock LL (1984) Pretreatment extraperitoneal surgical staging in primary carcinoma of the cervix uteri. Surg Gynecol Obstet 158:243PubMedGoogle Scholar
  116. Trott KR, Kummermehr J (1993) The time factor and repopulation in tumors and normal tissues. Sem Radiat Oncol 3:115–125Google Scholar
  117. Underwood PD, Wilson WC (1979) Radical hysterectomy: a critical review of twenty-two years experience. Am J Obstet Gynecol 134:889PubMedGoogle Scholar
  118. Utley JF, von Essen CF, Horn RA, Moeller JH (1984) High- dose- -rate afterloading brachytherapy in carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys 10:2259–2263PubMedGoogle Scholar
  119. Wachter-Gerstner N, Wachter S, Reinstadler E et al. (2003) Bladder and rectum dose defined from MRI based treatment planning for cervix cancer brachytherapy: comparison of dose-volume histograms for organ contours and organ wall, comparison with ICRU rectum and bladder reference point. Radiother Oncol 68(3):269–276PubMedGoogle Scholar
  120. Wachter-Gerstner N, Wachter S, Reinstadler E et al. (2003) The impact of sectional imaging on dose escalation in endocavitary HDR-brachytherapy of cervical cancer: results of a prospective comparative trial. Radiother Oncol 68(1):51–59PubMedGoogle Scholar
  121. Webb MJ, Symmonds RE (1979) Wertheim hysterectomy: a reappraisal. Obstet Gynecol 54:140PubMedGoogle Scholar
  122. Weitmann HD, Pötter R, Waldhausl C et al. (2005) Pilot study in the treatment of endometrial carcinoma with 3D image-based high-dose-rate brachytherapy using modified Heyman packing: clinical experience and dose-volume histogram analysis. Int J Radiat Oncol Biol Phys 62(2):468–478PubMedGoogle Scholar
  123. Withers HR (1993) Treatment-induced accelerated human tumor growth. Sem Radiat Oncol 3:135–143Google Scholar
  124. Yudelev M, Kuten A, Tatcher M, Rubinov R, Karmell B, Chen Y, Robinson E (1986) Correlations of dose and time-dose-fractionation factors (TDF) with treatment results and side effects in cancer of the uterine cervix. Gynecol Oncol 23:310–315PubMedGoogle Scholar

Zu Endobronchiale Brachytherapie

  1. Bedwinek J, Petty A, Burton C et al. (1991) The use of high dose rate endobronchial brachytherapy to palliate symptomatic endobronchial recurrence of previously irradiated bronchogenic carcinoma. Int J Radiol Oncol Biol Phys 22: 23–30Google Scholar
  2. Busch M, Makowski B, Sauerwein K (1977) Das Essener Nachladeverfahren für die intracavitäre Strahlentherapie. Strahlentherapie 153:581–588PubMedGoogle Scholar
  3. Celebioglu B, Gurkan OU, Erdogan S et al. (2002) High dose rate endobronchial brachytherapy effectively palliates symptoms due to inoperable lung cancer. J Clin Oncol 32(11): 443–448Google Scholar
  4. von Eicken C (1937) Über Bronchialcarcinom. Dtsch Med Wschr 62:383–384Google Scholar
  5. Freitag L, Ernst A, Thomas M et al. (2004) Improved endobronchial tumorcontrol of limited bronchogenic carcinoma using sequential photodynamic therapy and high dose brachytherapy. Thorax 59:790–793PubMedGoogle Scholar
  6. Fritz P, Schraube P, Becker HD et al. (1992) A new Applicator, Positionable to the Center of tracheobronchial Lumen for HDR-IR-192 Afterloading of tracheobronchial Tumors. Int J Radiat Oncol Biol Phys 20:1061–1066Google Scholar
  7. Gauwitz M, Ellerbrock A, Komaki N (1985) High dose rate endobronchial irradiation in recurrent bronchial carcinoma. Chest 88:810–814Google Scholar
  8. Gollins SW, Burt PA, Barber PV, Stout R (1994) High dose rate intraluminal radiotherapy for carcinoma of the bronchus: outcome of the treatment of 406 patients. Radiother Oncol 33:31–40PubMedGoogle Scholar
  9. Henschke NK, Hilaris BS, Mahan GD (1984) Remote afterloading with intracavitary applicators. Radiology 83:344–345Google Scholar
  10. Huber RM, Fischer R, Hautmann H et al. (1995) Palliative endobronchial brachytherapy for Central Lung Tumors. A Prospective Randomised Comparison of two Fractionation Schedules. Chest 107:463–470PubMedGoogle Scholar
  11. Huber RM, Fischer R, Pöllinger B et al. (1996) Does additional brachytherapy improve the effect of external radiation? A prospective randomized study in central lung tumours. Eur Respir J 9 (Suppl 23):10 SGoogle Scholar
  12. Lo TC, Gishorich H, Healey GA et al. (1995) Low dose rate versus high dose rate intraluminal brachytherapy for malignant endobronchial tumors. Radiother Oncol 35(3): 193–197PubMedGoogle Scholar
  13. Macha HN, Mai J, Stadler M et al. (1986) Neue Wege der Strahlentherapie des Bronchialkarzinoms. Dtsch Med Wochenschr 687–691Google Scholar
  14. Macha HN, Koch K, Stadler M et al. (1987) New technique for treating occlusive and stenosing tumours of the trachea and main bronchus: endobronchial irradiation by high dose Iridium-192 combined with laser recanalisation. Thorax 42:511–515PubMedGoogle Scholar
  15. Macha HN, Wahlers B, Reichle G et al. (1995) Endobronchial radiation therapy for obstructing malignancies: ten years experience with Iridium-192 high dose radiation (HDR) brachytherapy afterloading technique in 365 patients. Lung 1973:271–280Google Scholar
  16. Macha HN, Back P, Wehlers B et al. (2005) Überleben und Todesursachen nach palliativer endobronchialer Brachytherapie mit Iridium 192 High Dose bei rezidivierendem Bronchialkarzinom. Eine matched-pair Studie. Pneumologie 59: 12–17Google Scholar
  17. Marsiglia H, Boldegrou P, Lartigau E et al. (2000) High dose rate Brachytherapy as sole modality for early stage endobronchial carcinoma. Int J Radiat Oncol Biol Phys 47(3): 665–672PubMedGoogle Scholar
  18. Moghissi K, Boud MG, Sambrock RJ et al. (1999) Treatment of endotracheal or endobronchial obstruction by non-small cell lung cancer: lack of patient in an MRC randomized trial leaves key questions unanswered. Medical Research Council Lung Cancer Working Party. Clin Oncol (R Coll Radiol) 11(3):179–183Google Scholar
  19. Muto P, Ravo V, Panellit G et al. (2000) High dose rate brachytherapy of bronchial cancer: treatment optimisation using three schemes of therapy. Oncologist 5(3):209–214PubMedGoogle Scholar
  20. Ormerod FC (1941) Some notes on the treatment of carcinoma of the bronchus. J Laryngol Otol 56:1–10Google Scholar
  21. Schlungbaum W, Brandt H, Blum H (1962) Ergebnisse der endobronchialen Strahlentherapie des Bronchialkarzinoms. Radiologie Austria 3:201–207Google Scholar
  22. Speiser BL, Spratling L (1993 a) Remote afterloading brachytherapy for local control of endobronchial carcinoma. Int J Radiol Oncol Biol Phys 25:579–587Google Scholar
  23. Speiser BL, Spratling L (1993 b) Radiation Bronchitis and Stenosis secondary to high dose rate endobronchial irradiation. Int J Radiol Oncol Biol Phys 25:589–597Google Scholar
  24. Taulelle M, Chauret B, Vincent P et al. (1998) High dose rate endobronchial brachytherapy: results and complications in 189 patients. Eur Resp J 11(1):162–168Google Scholar
  25. Yankauer S (1922) Two cases of lung tumour treated bronchoskopically. NY State J Med 21:741–742Google Scholar

Zu Interstitielle Brachytherapie

  1. Ash D, Flynn A, Battermann J, de Reijke T, Lavagnini P, Blank L (2000) ESTRO/EORTC recommendations on permanent seed implantation for localized prostate cancer. Radiother Oncol 57:315–321PubMedGoogle Scholar
  2. Bartelink H, Horiot JC, Poortmans P, Struikmans H et al. (2001) Recurrence rates after treatment of breast cancer with standard radiotherapy with or without additional radiation. N Engl J Med 345:1378–1386PubMedGoogle Scholar
  3. Benk V, Mazeron JJ, Grimard L (1990) Comparison of curietherapy versus external irradiation combined with curietherapy in stage II squamous cell carcinomas of the mobile tongue. Radiother Oncol 18:339–347PubMedGoogle Scholar
  4. BlaskoJC , Grimm PD, Sylsvester JE, Cavanagh W (2000) The role of external beam radiotherapy with I-125/Pd-103 brachytherapy for prostate carcinoma. Radiother Oncol 57, 3: 273–278Google Scholar
  5. Brenner DJ, Hall EJ (1991) Conditions for the equivalence of continuous to pulsed low dose rate brachytherapy. Int J Radiat Oncol Biol Phys 20:181–190PubMedGoogle Scholar
  6. Freiha FS, Bagshaw MA (1984) Carcinoma of the prostate: results of post-irradiation biopsy. Prostate 5:19PubMedGoogle Scholar
  7. Galalae R, Kovács G, Schultze J, Loch T, Rzehak P, Wilhelm R, Bertermann H, Buschbeck B, Kohr P, Kimmig B (2002) Longterm outcome after elective irradiation of the pelvic lypatics and local escalation using high-dose-rate brachytherapy for locally advanced prostate cancer. Int Radiat Oncol Biol Phys 52:81–90Google Scholar
  8. Harrison LB, Zelefsky MJ, Armstrong JG, Schupak KD, Brennan MF (1993) Brachytherapy and function preservation in the localized management of soft tissue sarcomas of the extremity. Sem Radiat Oncol 3:260–269Google Scholar
  9. Hilaris BS, Fuks Z, Nori D, Fair WA, Whitmore WF (1991) Interstitial irradiation in prostatic cancer: report of 10-year results. In: Sauer R (ed) Interventional radiation therapy. Springer, Berlin Heidelberg New York Tokyo, pp 235–240Google Scholar
  10. Hoffstetter S, Malissard L, Forcard JJ, Pernot M (1986) A propos de 108 cas traités au Centre Alexis Vautrin. J Eur Radiother 7:101–110Google Scholar
  11. Housset M, Baillet F, Dessard-Diana B, Martin D, Miglianico L (1987) A retrospective study of three treatment techniques for T1-T2 base of tongue lesions: surgery plus postoperative radiation, external radiation plus interstitial implantation and external radiation alone. Int J Radiat Oncol Biol Phys 13:511–516PubMedGoogle Scholar
  12. Mazeron JJ, Richaud P (1984) Compte rendu de la XVIII réunion du groupe Europeen de Curietherapie. Session consacrée aux cancers de la lèvre. J Eur Radiother 5:50–56Google Scholar
  13. Mazeron JJ, Langlois D, Glaubiger D et al. (1987) Salvage Irradiation of oro-pharyngeal cancers using iridium 192 wire implants: 5-year results of 70 cases. Int J Radiat Oncol Biol Phys 13:957–962PubMedGoogle Scholar
  14. Nag S, Beyer D, Friedland J, Grimm P, Nath R (1999) American brachytherapy society (ABS) recommendations for transperineal permanent brachytherapy of prostate cancer. Int Radiat Oncol Biol Phys 44:789–799Google Scholar
  15. Papillon J, Montbarbon JF, Gerard JP et al. (1989) Interstitial curietherapy in the conservative treatment of anal and rectal cancers. Int Radiat Oncol Biol Phys 17:1161–1168Google Scholar
  16. Pernot M, Hoffstetter S, Forcard JJ (1991) Interstitial LDR curietherapy for head and neck cancers in 1991. Activity 5(3):122–130Google Scholar
  17. Pernot M, Malissard L, Aletti P, Hoffstetter S, Forcard JJ, Bey P (1990) Iridium-192 brachytherapy in the management of 147 stage T2 NO oral tongue carcinoma treated with irradiation alone. Int J Radiat Oncol Biol Phys (Suppl II):798Google Scholar
  18. Scardino PT, Wheeler TM (1988) Local control of prostate cancer with radiotherapy: frequency and prognostic significance of positive results of post-irradiation prostate biopsy. NCI Monogr 7:95PubMedGoogle Scholar
  19. Van der Werf-Messing BHP, Stap WCJ (1981) Carcinoma of the urinary bladder (category Tl Nx MO) treated either by radium implant or by transurethral resection only. Int J Radiat Oncol Biol Phys 7:299PubMedGoogle Scholar
  20. Van der Werf-Messing BHP, Facr PD, van Putten WLJ (1989) Carcinoma of the urinary bladder category T2,3 Nx MO treated by 40 Gy external irradiation followed by cesium 137 implant at reduced dose (50%). Int J Radiat Oncol Biol Phys 16:369–371PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • P. Fritz
    • 1
  • S.L. Roth
    • 2
  • R. Pötter
    • 3
  • F.W. Hensley
    • 4
  • K. Muskalla
    • 5
  • K.-J. Weber
    • 6
  • M. Wannenmacher
    • 7
  • H.-N. Macha
    • 8
  • J. Dimopoulos
    • 9
  1. 1.Klinik für Radio-Onkologie St. MarienkrankenhausSiegenDeutschland
  2. 2.Klinik für Strahlentherapie und Radiologische OnkologieUniversität DüsseldorfDüsseldorfDeutschland
  3. 3.Universitätsklinik für Strahlentherapie und StrahlenbiologieUniversitätsklinik WienWien ÖsterreichDeutschland
  4. 4.Abteilung Radioonkologie und Strahlentherapie Radiologische KlinikHeidelbergDeutschland
  5. 5.Praxis für StrahlentherapieBergisch GladbachDeutschland
  6. 6.Abteilung für Radioonkologie und Strahlentherapie Radiologische KlinikHeidelbergDeutschland
  7. 7.Abt. Radioonkologie und StrahlentherapieRadiologische Universitätsklinik HeidelbergHeidelbergDeutschland
  8. 8.Abteilung Pneumologie Lungenklinik HemerHemerDeutschland
  9. 9.Universitätsklinik für Strahlentherapie und StrahlenbiologieUniversitätsklinik WienWien ÖsterreichDeutschland

Personalised recommendations