Advertisement

Strahlenpathologie

  • W. Dörr
Chapter

Zusammenfassung

Frühe (akute) Strahlenfolgen manifestieren sich bereits unter oder kurz nach Beendigung der Bestrahlungsserie. Demgegenüber werden chronische (späte) Strahleneffekte erst Monate bis Jahre nach der Behandlung beobachtet. Die zeitliche Grenze wird willkürlich mit 90 Tagen nach dem Beginn der Strahlentherapie definiert (Dörr 2009; Perez u. Brady 1993).

Literatur

  1. Bentzen SM (2006) Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer 6:702–713PubMedCrossRefGoogle Scholar
  2. Bentzen SM, Turesson I, Thames HD (1990) Fractionation sensitivity and latency of teleangiectasia after postmastectomy radiotherapy. A graded response analysis. Radiother Oncol 18:95–106PubMedCrossRefGoogle Scholar
  3. Coppes RP, Roffel AF, Zeilstra LJW, Vissink A, Konings AWT (2000) Early radiation effects on muscarinic receptor-induced secretory responsiveness of the parotid gland in the freely moving rat. Radiat Res 153:339–346PubMedCrossRefGoogle Scholar
  4. Dörr W (1997) Three A’s of repopulation during fractionated irradiation in squamous epithelia: Asymmetry loss, Acceleration of stem–cell divisions and Abortive divisions. Int J Radiat Biol 72:635–643PubMedCrossRefGoogle Scholar
  5. Dörr W (2009) Pathogenesis of normal tissue side effects. In: Joiner M, Van der Kogel A (Hrsg) Basic Clinical Radiobiology, 4th Edition, Chapter 13; Hodder Arnold, London, S 169–190CrossRefGoogle Scholar
  6. Dörr W, Beck-Bornholdt HP (1999) Radiation-induced impairment of urinary bladder function in mice: fine structure of the acute response and consequences on late effects. Radial Res 151:461–467CrossRefGoogle Scholar
  7. Dörr W, Bentzen SM (1999) Late functional response of mouse urinary bladder to fractionated X-irradiation. Int J Radiat Biol 75:1307–1315PubMedCrossRefGoogle Scholar
  8. Dörr W, Eckhardt M, Ehme A, Koi S (1998) Pathogenesis of the acute radiation response of the urinary bladder: Experimental results. Strahlenther Onkol 174 (Suppl III):93–95PubMedGoogle Scholar
  9. Dörr W, Emmendörfer H, Weber-Frisch M (1996) Tissue kinetics in mouse tongue mucosa during daily fractionated radiotherapy. Cell Prolif 29:495–504PubMedCrossRefGoogle Scholar
  10. Dörr W, Grötz KA, Hartmann JT, Riesenbeck D (2007) Orale Mukositis: Experimentelle und klinische Ansätze zur Prävention und Behandlung. Onkologe 13:150–157CrossRefGoogle Scholar
  11. Dörr W, Hartmann JT, Riesenbeck D, Grötz KA (2009) Mundschleimhaut. In: Feyer P, Ortner P (Hrsg) Supportivtherapie in der Onkologie. Urban & Vogel, München, S. 72–85Google Scholar
  12. Dörr W, Hendry JH (2001) Consequential late effects in normal tissues. Radiother Oncol 61:223–231PubMedCrossRefGoogle Scholar
  13. Dörr W, Herrmann T (2009) Akute Strahlenveränderungen der Gewebe. In: Bamberg M, Molls M, Sack H (Hrsg) Radioonkologie. Band 1: Grundlagen. 2. Aufl. Zuckschwerdt, München, S 302–309Google Scholar
  14. Dörr W, Herrmann T, Riesenbeck D (2005) Prävention und Therapie von Nebenwirkungen in der Strahlentherapie. UNI-MED Science, BremenGoogle Scholar
  15. Dörr W, Jaal J, Zips D (2007) Prostate cancer: Biological dose considerations and constraints in tele- and brachytherapy. Strahlenther Onkol 183 Suppl 2:14–15PubMedCrossRefGoogle Scholar
  16. Dörr W, Obeyesekere MN (2001) A mathematical model for cell density and proliferation in squamous epithelium after single dose irradiation. Int J Radiat Biol 77:497–505PubMedCrossRefGoogle Scholar
  17. Dörr W, Satthoff I (1996) Einfluß der Gesamtbehandlungszeit auf Strahlenfolgen an der Harnblase – tierexperimentelle Daten. Strahlenther Onkol 172, Sonderheft I:42Google Scholar
  18. Dörr W, Van der Kogel AJ (2009) The volume effect in radiotherapy. In: Joiner M, Van der Kogel A (Hrsg) Basic Clinical Radiobiology, 4th Edition, Chapter 14; Hodder Arnold, London, S 191–206CrossRefGoogle Scholar
  19. Emami B, Lyman J, Brown A et al. (1991) Tolerance of normal tissues to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122PubMedCrossRefGoogle Scholar
  20. Hakenjos L, Bamberg M, Rodemann HP (2000) TGF-betal-mediated alterations of rat lung fibroblast differentiation resulting in the radiation-induced fibrotic phenotype. Int J Radiat Biol 76:503–509PubMedCrossRefGoogle Scholar
  21. Herrmann T, Baumann M, Dörr W (2006) Klinische Strahlenbiologie - kurz und bündig, 4. Aufl. Elsevier, München, 2006Google Scholar
  22. Herrmann T, Baumann M, Voigtmann L, Knorr A (1997) Effect of irradiated lung volume on lung damage in pigs. Radiother Oncol 44:35–40PubMedCrossRefGoogle Scholar
  23. Herrmann T, Schuh D, Trott KR (2000) Leber und Pankreas. In: Dörr W, Zimmermann JS, Seegenschmiedt MH (Hrsg) Nebenwirkungen in der Radioonkologie. Urban & Vogel, München, S 157–164Google Scholar
  24. Hopewell JW, Trott KR (2000) Volume effects in radiobiology as applied to radiotherapy. Radiother Oncol 56:283–288PubMedCrossRefGoogle Scholar
  25. Hornsey S (1985) The macrocolony assay in small intestine. In: Potten CS, Hendry JH (Hrsg) Cell clones: Manual of mammalian cell techniques. Churchill Livingstone, Edinburgh, pp 44–49Google Scholar
  26. Jung H, Beck-Bornholdt HP, Svobody V, Alberti W, Herrmann T (2001) Quantification of late complications after radiation therapy. Radiother Oncol 61:233–246PubMedCrossRefGoogle Scholar
  27. Kraft M, Oussouren Y, Stewart FA, Dörr W, Schultz-Hector S (1996) Radiation-induced changes in TGF-β and collagen expression in murine bladder wall and its correlation with bladder function. Radiat Res 146:619–627PubMedCrossRefGoogle Scholar
  28. Kutcher GJ, Burman C, Brewster L, Goitein M, Mohan R (1991) Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluation. Int J Radiat Oncol Biol Phys 21:137–146PubMedCrossRefGoogle Scholar
  29. Liu K, Kasper M, Trott KR (1996) Changes in keratinocyte differentiation during accelerated repopulation of the irradiated mouse epidermis. Int J Radiat Biol 69:763–769PubMedCrossRefGoogle Scholar
  30. Lyman KLT (1992) Normal tissue complication probabilities: variable dose per fraction. Int J Radiat Oncol Biol Phys 22:247–250PubMedCrossRefGoogle Scholar
  31. Marks LB, Ten Haken RK, Martel MK (2010) Quantitative Analyses of normal tissue effects in the clinic. Int. J. Radiat Oncol Biol Phys, 76 SupplGoogle Scholar
  32. Michalowski A (1981) Effects of radiation on normal tissues: Hypothetical mechanisms and limitations of in situ assays of clonogenicity. Radiat Environ Biophys 19:157–172PubMedCrossRefGoogle Scholar
  33. Niemierko A, Goitein A (1992) Modeling of normal tissue response to radiation: the critical volume model. Int J Radiat Oncol Biol Phys 25:135–145CrossRefGoogle Scholar
  34. Paulus U, Potten CS, Löffler M (1992) A model of the control of cellular regeneration in the intestinal crypt after perturbation based solely on local stem cell regulation. Cell Prolif 25:175–186CrossRefGoogle Scholar
  35. Perez CA, Brady LW (1993) Acute radiation morbidity scoring criteria (RTOG). In: Perez CA, Brady LW (eds) Principles and practice of radiation oncology, 2nd edn. Lippincott, Philadelphia, pp 53–55Google Scholar
  36. Potten CS, Hendry JH (Hrsg) (1983) Cytotoxic insults to tissues: Effects on cell lineages. Churchill-Livingstone, EdinburghGoogle Scholar
  37. Rodemann HP, Bamberg M (1995) Cellular basis of radiation-induced fibrosis. Radiother Oncol 35:83–90PubMedCrossRefGoogle Scholar
  38. Schultz-Hector S (1992) Radiation-induced heart disease: review of experimental data on dose response and pathogenesis. Int J Radiat Biol 61:149–160PubMedCrossRefGoogle Scholar
  39. Thames HD, Hendry JH (1987) Fractionation in radiotherapy. Taylor & Francis, LondonGoogle Scholar
  40. Turesson I (1991) Characteristics of dose-response relationships for late radiation effects: an analysis of skin teleangiectasia and of head and neck morbidity. Radiother Oncol 20:149–158PubMedCrossRefGoogle Scholar
  41. Wenz F, Guttenberger R, Engenhart-Cabillic R (2000) Gehirn, Rückenmark und Sinnesorgane. In: Dörr W, Zimmermann JS, Seegenschmiedt MH (Hrsg) Nebenwirkungen in der Radioonkologie. Urban & Vogel, München, S 178–190Google Scholar
  42. Wiegel T, Dörr W, Hanfmann B (2000) Niere und harnableitende Organe. In: Dörr W, Zimmermann JS, Seegenschmiedt MH (Hrsg) Nebenwirkungen in der Radioonkologie. Urban & Vogel, München, S 191–198Google Scholar
  43. Withers HR (1967) The dose-survival relationship for irradiation of epithelial cells of mouse skin. Br J Radiol 40:187–194PubMedCrossRefGoogle Scholar
  44. Withers HR, Elkind MM (1970) Microcolony survival assay for cells of mouse intestinal mucosa exposed to radiation. Int J Radiat Biol 17:261–267CrossRefGoogle Scholar
  45. Withers HR, Taylor JMG, Maciejewski B (1988) Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys 14:751–759PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • W. Dörr
    • 1
  1. 1.Univ.-Klinik für Strahlentherapie & Christian Doppler Laborfür Medizinische Strahlenforschung für die RadioonkologieWienÖsterreich

Personalised recommendations