Advertisement

Nichtmaligne Erkrankungen

  • M. H. Seegenschmiedt
Chapter

Zusammenfassung

Nichtmaligne Erkrankungen weisen zahlreiche Merkmale auf, die berechtigten Anlass zu ihrer Behandlung geben. Sie können invasiv und aggressiv wachsen ohne Metastasen zu setzen wie z.B. beim Desmoid ; sie können kosmetisch entstellend und funktionell sehr störend sein wie beim Keloid oder der endokrinen Orbitopathie; teilweise können sie sogar lebensbedrohlich sein, z. B. beim therapierefraktären Hämangiom der Leber (Kasabach-Merritt-Syndrom ) oder dem juvenilen Angiofibrom im Gesichtsbereich bei Kindern und Jugendlichen.

Literatur

Zu Allgemeine Einführung und Evidenzbasierte Anwendung

  1. Broerse JJ, Snijders-Keilholz A, Jansen JTM et al. (1999) Assessment of carcinogenic risk for treatment of Graves’ ophthalmopathy in dependence on age and irradiation geometry. Radiother Oncol 53:205–208PubMedGoogle Scholar
  2. Bureau of Radiological Health (1977) A Review of the use of ionizing radiation for the treatment of benign disease, vol 1, pp 1–2. Rockville, MD, US Department of Health, Education and WelfareGoogle Scholar
  3. Hess F (1980) Strahlentherapie gutartiger Erkrankungen. In: Scherer E (Hrsg) Strahlentherapie – Radiologische Onkologie, Springer, Berlin Heidelberg New York Tokio, S 354–369Google Scholar
  4. ICRP Publication No. 60 (1991) 1990 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP, vol 21, 1–3, Pergamon Press, OxfordGoogle Scholar
  5. Jansen JTM, Broerse J, Zoetelief J, Klein C, Seegenschmiedt MH (2001) Assessment of Carcinogenic Risk in the Treatment of Benign Disease of Knee and Shoulder Joint. In: Seegenschmiedt MH, Makoski HB (Hrsg) 15. Kolloquium Radioonkologie/Strahlentherapie, Radiotherapie bei gutartigen Erkrankungen. Diplodocus, Altenberge, pp 13–15Google Scholar
  6. Kramer S, Herring DF (1976) The patterns of care study: a nationwide evaluation of the practice of radiation therapy in cancer management in radiation therapy. Int J Radiat Oncol Biol Phys 1:1231–1236PubMedGoogle Scholar
  7. Kramer S (1977) The study of the patterns of care in radiation therapy. Cancer 39:780–787PubMedGoogle Scholar
  8. Leer JWH, van Houtte P, Davelaar J (1998) Indications and treatment schedules for irradiation of benign diseases: a survey. Radiother Oncol 48:249–257PubMedGoogle Scholar
  9. Makoski HB (1997) Gutartige Erkrankungen (Kapitel 11). In: Sack H, Scherer E (Hrsg) Radiologische Onkologie (3. Aufl). Springer, Berlin Heidelberg New York Tokio, pp 293–311Google Scholar
  10. Micke O, Seegenschmiedt MH (2002) The German Working Group guidelines for radiation therapy of benign diseases: a multicenter approach in Germany. Int J Radiat Oncol Biol Phys 52:496–513PubMedGoogle Scholar
  11. Order EO, Donaldson SS (eds) (1998) Radiation therapy of benign diseases. 2nd edn. Springer, Berlin Heidelberg New York TokioGoogle Scholar
  12. Seegenschmiedt MH, Katalinic A, Makoski H et al. (2000) Radiation therapy for benign diseases: patterns of care study in Germany. Int J Radiat Oncol Biol Phys 47:195–202PubMedGoogle Scholar
  13. Seegenschmiedt MH, Makoski HB, Micke O, German Cooperative Group Radiotherapy for Benign Diseases (2001) Benign diseases: Radiation prophylaxis for heterotopic ossification about the hip joint – a multi-center study. Int J Radiat Oncol Biol Phys 51:756–765PubMedGoogle Scholar
  14. Seegenschmiedt MH, Micke O, Willich N (2004) Radiation therapy for non-malignant diseases in Germany – Current concepts and future perspectives. Strahlenther Onkol 180:718–730PubMedGoogle Scholar
  15. Trott KR (1994) Therapeutic effects of low radiation doses. Strahlenther Oncol 170:1–12Google Scholar

Zu Strahlenbiologische Voraussetzungen

  1. Behrends U, Peter RU, Hintermeier-Knabe R et al. (1994) Ionising radiation induces human intercellular adhesion molecule 1 in vitro. J Invest Dermatol 103:726–730PubMedGoogle Scholar
  2. Hildebrandt G, Seed MP, Freemantle CN et al. (1998 a) Effects of low dose ionizing radiation on murine chronic granulomatous tissue. Strahlenther Onkol 174:580–588PubMedGoogle Scholar
  3. Hildebrandt G, Seed MP, Freemantle CN et al. (1998 b) Mechanisms of the anti-inflammatory activity of low-dose radiation therapy. Int J Radiat Biol 74:367–378PubMedGoogle Scholar
  4. Hildebrandt G, Jahns J, Hindemith M et al. (2000) Effects of low dose radiation therapy on adjuvant induced arthritis in rats. Int J Radiat Biol 76:1143–1153PubMedGoogle Scholar
  5. Hildebrandt G, Magiorella, Rödel F, Rödel V, Willis D, Trott KR (2002) Mononuclear cell adhesion and cell adhesion molecule liberation after X-irradiation of activated endothelial cells in vitro. Int J Radiat Biol 78:315–325PubMedGoogle Scholar
  6. Hildebrandt G, Radlingmayr A, Rosenthal S et al. (2003) Lowdose radiotherapy (LD-RT) and the modulation of iNOS expression in adjuvant-induced arthritis in rats. Int J Radiat Biol 79:993–1001PubMedGoogle Scholar
  7. Hosoi Y, Miyachi H, Matsumoto Y et al. (2001) Induction of interleukin-1beta and interleukin-6mRNA by low doses of ionizing radiation in macrophages. Int J Cancer 96:270–276PubMedGoogle Scholar
  8. Hopewell JW, Robbins MEC, Van den Aardweg GJMJ et al. (1993) The modulation of radiation-induced damage to pig skin by essential fatt acids. Brit J Cancer 58:1–7Google Scholar
  9. ICRP Publication 60 (1991) Recommendations of the International Commission on Radiological Protection. Annals of the ICRP 21:1–3. Pergamon Press, OxfordGoogle Scholar
  10. Kern PM, Keilholz L, Forster C et al. (1999) In vitro apoptosis in peripheral blood mononuclear cells induced by low-dose radiotherapy displays a discontinuous dose-dependance. Int J Radiat Biol 75:995–1003PubMedGoogle Scholar
  11. Kern PM, Keilholz L, Forster C et al. (2000) Low-dose radiotherapy selectively reduces adhesion of peripheral blood mononuclear cells to endothelium in vitro. Radiother Oncol 54:273–282PubMedGoogle Scholar
  12. Magiorella L (1985) The effect of low doses of X-rays on cell adhesion molecule expression in stimulated E.A.hy.926 endothelial cells. J Immunol 135:1119–1125Google Scholar
  13. Micke P, Blaukat A, Micke O (2003) Effect of Cobalt-60 irradiation on bradykinin B2 receptor expression on human HF-15 cells. Ex Cli Journal 2:52–57Google Scholar
  14. O’Brien-Ladner A, Nelson ME, Kimler BF, Wesselius L (1993) Release of interleukin 1 by human alveolar makrophages after in vitro irradiation. Radiat Res 136:37–41PubMedGoogle Scholar
  15. Rodemann HP, Bamberg M (1985) Cellular basis of radiationinduced fibrosis. Radiother Oncol 35:83–90Google Scholar
  16. Rödel F, Kamprad F, Sauer R, Hildebrandt G (2002) Funktionelle und molekulare Aspekte der anti-inflammatorischen Wirkung niedrig dosierter Radiotherapie. Strahlenther Onkol 178:1–9PubMedGoogle Scholar
  17. Rödel F, Kley N, Beuscher HU et al. (2002) Anti-inflammatory effect of low-dose X-irradiation and the involvement of a TGF-beta1-induced down-regulation of leukocyte/endothelial cell adhesion. Int J Radiat Biol 78:711–719Google Scholar
  18. Rödel F, Schaller U, Schultze-Mosgau S et al. (2004) The induction of TGF-beta(1)-and NF-kappaB parallels a biphasic time course of leukocyte/endothelial cell adhesion following low-dose X-irradiation. Strahlenther Onkol 180:194–200PubMedGoogle Scholar
  19. Rubin, P, Soni A, Williams JP (1999) The molecular and cellular basis for the radiation treatment of benign proliferative diseases. Sem Radiat Oncol 9:203–214Google Scholar
  20. Schaue D, Marples B, Trott KR (2002) The effects of low-dose x-irradiation on the oxidative burst in stimulated makrophages. Int J Radiat Biol 78:567–576PubMedGoogle Scholar
  21. Sherman ML, Datta R, Hallahan DE, Weichselbaum RR, Kufe DW (1991) Regulation of tumor necrosis factor gene expression by ionising radiation in human myeloid leikemia cells and peripheral blood monocytes. J Clin Invest 87:1794–1797PubMedGoogle Scholar
  22. Sokoloff N (1898) Röntgenstrahlen gegen Gelenkrheumatismus. Fortschr Röntgenstr 1:209–213Google Scholar
  23. Trott KR (1994) Therapeutic effects of low radiation doses. Strahlenther Oncol 170:1–12Google Scholar
  24. Trott KR, Parker R, Seed MP et al. (1995) The effect of x-rays on experimental arthritis in the rat. Strahlenther Onkol 171:534–538PubMedGoogle Scholar
  25. Trott K-R, Kamprad F (1999) Radiobiological mechanisms of anti-inflammatory radiotherapy. Radiother Oncol 51:197–203PubMedGoogle Scholar
  26. Vieten H (1977) Neurovegetative Wirkungen der Strahlentherapie. Grundlagen und Möglichkeiten der radiologischen Funktionstherapie. Die Reaktion des vegetativen Nervensystems auf ionisierende Strahlen. In: Sturm A, Birkmayer W (Hrsg) Klinische Pathologie des vegetativen Nervensystems. Fischer, Stuttgart New York, S 1531–1547Google Scholar
  27. Von Pannewitz G (1970) Degenerative Erkrankungen. In: Zuppinger A, Ruckensteiner E (Hrsg) Handbuch der medizinischen Radiologie. Springer, Berlin Heidelberg New York Tokio, S 96–98Google Scholar
  28. Von Wangenheim KH, Petersen HP, Schwenke K (1995) A major component of radiation action: interference with intracellular control of differentiation. Int J Radiat Biol 68:369–388PubMedGoogle Scholar

Zu Meningeom

  1. Ciric I, Rosenblatt S (2001) Suprasellar meningiomas. Neurosurg 49:1372–1377Google Scholar
  2. Debus J, Wuendrich M, Pirzkall A et al. (2001) High efficacy of fractionated stereotactic radiotherapy of large skull base meningiomas: Long-term results. J Clin Oncol 19:3547–3553PubMedGoogle Scholar
  3. Engenhart R, Kimmig BN, Hover KH et al. (1990) Stereotactic single high dose radiation therapy of benign intracranial meningiomas. Int J Radiat Oncol Biol Phys 19:1021–1026PubMedGoogle Scholar
  4. Goldsmith BJ, Wara WM, Wilson CB, Larson D (1994) Prospective irradiation for subtotally resected meningiomas. A retrospective analysis of 140 patients treated from 1967–1990. J Neurosurg 80:195–201PubMedGoogle Scholar
  5. Goodwin JW, Crowley J, Eyre HJ et al. (1993) A phase II evaluation of tamoxifen in unresectable or refractory meningiomas: A Southwest Oncology Group Study. J Neurooncol 15:75–77PubMedGoogle Scholar
  6. Grunberg S, Weiss M, Spitz I et al. (1991) Treatment of unresectable meningiomas with the antiprogesterone agent mifepristone. J Neurosurg 74:861–886PubMedGoogle Scholar
  7. Gudjonsson O, Blomquist E, Nyberg G et al. (1999) Stereotactic irradiation of skull base meningiomas with high energy protons. Acta Neurochir (Wien) 141:933–940Google Scholar
  8. Kondziolka D, Levy EI, Niranjan A, Flickinger JC, Lunsford LD (1999) Long-term outcomes after meningioma radiosurgery: Physician and patient perspectives. J Neurosurg 91:44–50PubMedGoogle Scholar
  9. Kyritsis AP (1996) Chemotherapy for meningiomas. J Neurooncol 29:269–272PubMedGoogle Scholar
  10. Mathiesen T, Lindquist C, Kihlstrom L (1996) Recurrence of cranial base meningiomas. Neurosurg 39:2–7Google Scholar
  11. Milosevic M, Frost PJ, Laperriere NJ, Wong CS, Simpson WJ (1996) Radiotherapy for atypical or malignant intracranial meningioma. Int J Radiat Oncol Biol Phys 34:817–822PubMedGoogle Scholar
  12. Muthukumar N, Kondziolka D, Lunsford LD, Flickinger JC (1998) Stereotactic radiosurgery for tentorial meningiomas. Acta Neurochir (Wien) 140:315–320Google Scholar
  13. Nutting C, Brada M, Brazil L et al. (1999) Radiotherapy in the treatment of benign meningioma of the skull base. J Neurosurg 90:823–827PubMedGoogle Scholar
  14. Simpson D (1957) The recurrence of intracranial meningiomas after surgical treatment. J Neurol Neurosurg Psychiatry 20:22–39PubMedGoogle Scholar
  15. Stewart DJ, Dahrouge S, Wee M, Aitken S, Hugenholtz H (1995) Intraarterial cisplatin plus intravenous doxorubicin for inoperable recurrent meningiomas. J Neurooncol 24:189–194PubMedGoogle Scholar
  16. Taylor B, Marcus R, Friedman W, Ballinger W, Million R (1988) The meningioma controvery: postoperative radiation therapy. Int J Radiat Oncol Biol Phys 15:299–304PubMedGoogle Scholar
  17. Vernimmen FJ, Harris JK, Wilson JA, Melvill R, Smit BJ, Slabbert JP (2001) Stereotactic proton beam therapy of skull base meningiomas. Int J Radiat Oncol Biol Phys 49:99–105PubMedGoogle Scholar
  18. Wenkel E, Thornton AF, Finkelstein D et al. (2000) Benign meningioma: partially resected, biopsied, and recurrent intracranial tumors treated with combined proton and photon radiotherapy. Int J Radiat Oncol Biol Phys 48:1363–1370PubMedGoogle Scholar

Zu Hypophysenadenom

  1. Becker G et al. (2002) Radiation Therapy in the multimodal treatment approach of pituitary adenoma. Strahlenth Onkol 4:173–86Google Scholar
  2. Engenhart-Cabilic R et al. (Hrsg) (1998) Leitlinien zur Strahlentherapie von Hypophysenadenomen AG Hypophyse und Hypophysentumore der Deutschen Gesellschaft für Endokrinologie (DGE), der Deutschen Gesellschaft für Radioonkologie (DEGRO), der Deutschen Gesellschaft für Neurochirurgie, der AG Radioonkologie (ARO) und der AG Neuroonkologie (NOA) der Deutschen KrebsgesellschaftGoogle Scholar
  3. Grabenbauer GG et al. (1996) Hormoninaktive Hypophysenadenome: Resultate und Spätfolgen nach Operation und Radiotherapie. Strahlenther Onkol 172:193–197PubMedGoogle Scholar
  4. Grigsby PW et al. (1988) Results of surgery and irradiation and or irradiation alone for pituitary adenomas. J Neurooncol 6:129–134PubMedGoogle Scholar
  5. Gingsby PW, Smpson JR, Emami BN et al. (1989) Prognostic factors and results of surgery and postoperative radiotherapy in the management of pituitary adenomas. Int J Radiat Oncol Biol Phys 16:1411–1417Google Scholar
  6. Isobe K et al. (2000) Postoperative radiation therapy for pituitary adenoma. J Neurooncol 48:135–140PubMedGoogle Scholar
  7. Levy RP et al. (1996) Stereotactic helium-ion irradiation for Cushing’s disease, prolactinoma, and non-secreting adenoma – 36 years experience at Lawrence Berkeley Laboratory. Radiosurgery 1:66–74Google Scholar
  8. Milker-Zabel S et al. (2001) Fractionated stereotacally guided radiosurgery and radiotherapy for pituitary adenomas. Int J Radiat Oncol Biol Phys 50:1279–1286PubMedGoogle Scholar
  9. McCord MW et al. (1997) Radiotherapy for pituitary adenoma: long-term outcome and sequelae. Int J Radiat Oncol Biol Phys 39:437–444PubMedGoogle Scholar
  10. Quabbe HJ, Fahlbusch R, Von zur Mühlen A, Müller OA, Schulte HM, Von Werder K, Willig R (1997) Rationelle Therapie in der Endokrinologie. Herausgegeben von der Deutschen Gesellschaft für Endokrinologie. In: Ziegler R, Landgraf R, Müller OA, Von zur Mühlen A (Redaktion) Hypothalamus und Hypophyse. Thieme, Stuttgart, S 1–33Google Scholar
  11. Shaw E et al. (1995) Radiation Therapy Oncology Group: Radiosurgery quality assurance Guidelines. Int J Radiat Oncol Biol Phys 33:301–307Google Scholar
  12. Zierhut D et al. (1995) External radiotherapy of pituitary adenomas. Int J Radiat Oncol Biol Phys 33:307–314PubMedGoogle Scholar

Zu Kraniopharyngeom

  1. Becker G, Kortmann RD, Skaley M et al. (1999) The role of radiotherapy in the treatment of craniopharyngioma – indications, results, side effects. Front Radiat Ther Oncol 33:100–113PubMedGoogle Scholar
  2. Bloom HJ, Glees J, Bell J (1990) The treatment and long-term prognosis of children with intracranial tumors: A study of 610 cases, 1950–1981. Int J Radiat Oncol Biol Phys 18:723–745PubMedGoogle Scholar
  3. DeVile CJ, Grant DB, Hayward RD et al. (1996) Growth and endocrine sequelae of craniopharyngioma. Arch Dis Child 75:108–114PubMedGoogle Scholar
  4. Habrand JL, Ganry O, Couanet D et al. (1999) The role of radiation therapy in the management of craniopharyngioma: a 25-year experience and review of the literature. Int J Radiat Oncol Biol Phys 44:255–263PubMedGoogle Scholar
  5. Hoffmann HJ, DeSilva M, Humphreys RP et al. (1992) Aggressive surgical management of cranio-pharyngiomas in children. J Neurosurg 76:47–52Google Scholar
  6. Rajan B, Ashley S, Gorman C et al. (1993) Craniopharyngioma – long-term results following limited surgery and radiotherapy. Radiother Oncol 26:1–10PubMedGoogle Scholar
  7. Sanford RA, Muhlbauer MS (1991) Craniopharyngioma in children. Neurol Clin 9:453–465PubMedGoogle Scholar
  8. Sanford RA (1994) Craniopharyngioma: Results of survey of the American Society of Pediatric Neurosurgery. Pediatr Neurosurg 21 (Suppl 1):39–43PubMedGoogle Scholar
  9. Sung DI, Chang CH, Harisiadis L et al. (1981) Treatment results of craniopharyngiomas. Cancer 47:847–852Google Scholar
  10. Schulz-Ertner D, Frank C, Herfarth KK et al. (2002) Fractionated stereotactic radiotherapy for craniopharyngiomas. Int J Radiat Oncol Biol Phys 54:1114–1120PubMedGoogle Scholar
  11. Tomita T, McLone D (1993) Radical resection of childhood craniopharyngiomas. Pediatr Neurosurg 19:6–14PubMedGoogle Scholar

Zu Akustikusneurinom

  1. Andrews DW, Suarez O, Goldmann HW et al. (2001) Stereotactic radiosurgery and fractionated stereotactic radiotherapy for the treatment of acoustic schwannomas: comparative observations of 125 patients treated at one institution. Int J Radiat Oncol Biol Phys 50:1265–1278PubMedGoogle Scholar
  2. Flickinger JC, Kondziolka D, Lunsford L (1996) Dose and diameter relationships for facial, trigeminal, and acoustic neuropathies following acoustic neuroma radiosurgery. Radiother Oncol 41:215–219PubMedGoogle Scholar
  3. Flickinger JC, Kondziolka D, Niranjan A, Lunsford LD (2001) Results of acoustic neuroma radiosurgery: An analysis of 5 years’ experience using current methods. J Neurosurg 94:1–6PubMedGoogle Scholar
  4. Foote KD, Friedman WA, Buatti JM, Meeks SL, Bova FJ, Kubilis PS (2001) Analysis of risk factors associated with radiosurgery for vestibular schwannoma. J Neurosurg 95:440–449PubMedGoogle Scholar
  5. Fuss M, Debus J, Lohr F et al. (2000) Conventionally fractionated stereotactic radiotherapy (FSRT) for acoustic neuromas. Int J Radiat Oncol Biol Phys 48:1381–1387PubMedGoogle Scholar
  6. Iwai Y, Yamanaka K, Shiotani M, Uyama T (2003) Radiosurgery for acoustic neuromas: results of low-dose treatment. Neurosurgery 53:282–287PubMedGoogle Scholar
  7. Karpinos M, Teh BS, Zeck O et al. (2002) Treatment of acoustic neuroma: stereotactic radiosurgery vs. microsurgery. Int J Radiat Oncol Biol Phys 54:1410–1421PubMedGoogle Scholar
  8. Linskey ME, Martinez AJ, Kondziolka D et al. (1993) The radiobiology of human acoustic schwannoma xenografts after stereotactic radiosurgery evaluated in the subrenal capsule of athymic mice. J Neurosurg 78:645–653PubMedGoogle Scholar
  9. Meijer OW, Vandertop WP, Baayen JC, Slotman BJ (2003) Single-fraction vs. fractionated linac-based stereotactic radiosurgery for vestibular schwannoma: a single-institution study. Int J Radiat Oncol Biol Phys 56:1390–1396PubMedGoogle Scholar
  10. Niranjan A, Lunsford LD, Flickinger JC et al. (1999) Dose reduction improves hearing preservation rates after intracanalicular acoustic tumor radiosurgery. Neurosurgery 45:753–762PubMedGoogle Scholar
  11. Perks JR, St George EJ, El Hamri K et al. (2003) Stereotactic radiosurgery XVI: Isodosimetric comparison of photon stereotactic radiosurgery techniques (gamma knife vs. micromultileaf collimator linear accelerator) for acoustic neuroma – and potential clinical importance. Int J Radiat Oncol Biol Phys 57:1450–1459PubMedGoogle Scholar
  12. Petit JH, Hudes RS, Chen TT et al. (2001) Reduced-dose radiosurgery for vestibular schwannomas. Neurosurgery 49:1299–1306PubMedGoogle Scholar
  13. Regis J, Pellet W, Delsanti C et al. (2002) Functional outcome after gamma knife surgery or micro-surgery for vestibular schwannomas. J Neurosurg 97:1091–1100PubMedGoogle Scholar
  14. Rowe JG, Radatz MW, Walton L et al. (2003) Gamma knife stereotactic radiosurgery for unilateral acoustic tumors. J Neurol Neurosurg Psychiatry 74:1536–1542PubMedGoogle Scholar
  15. Sakamoto T, Shirato H, Takeichi N et al. (2001) Annual rate of hearing loss falls after fractionated stereotactic irradiation for vestibular schwannoma. Radiother Oncol 60:45–48PubMedGoogle Scholar
  16. Samii M, Matthies C (1997 a) Management of 1000 vestibular schwannomas (acoustic neuromas): surgical management and results with an emphasis on complications and how to avoid them. Neurosurg 40:11–21Google Scholar
  17. Samii M, Matthies C (1997 b) Management of 1000 vestibular schwannomas (acoustic neuromas): hearing function in 1000 tumor resections. Neurosurg 40:248–260Google Scholar
  18. Samii M, Matthies C (1997 c) Management of 1000 vestibular schwannomas (acoustic neuromas): the facial nerve preservation and restitution of function. Neurosurg 40:684–694Google Scholar
  19. Sawamura Y, Shirato H, Sakamoto T et al. (2003) Management of vestibular schwannoma by fractionated stereotactic radiotherapy and associated cerebrospinal fluid malabsorption. J Neurosurg 99:685–692PubMedGoogle Scholar
  20. Seo Y, Fukuoka S, Nakagawara J et al. (1996) Effect of gamma knife radiosurgery on acoustic neurinomas. Stereotact Funct Neurosurg 66 (Suppl 1):93–102PubMedGoogle Scholar
  21. Shirato H, Sakamoto T, Takeichi N et al. (2000) Fractionated stereotactic radiotherapy for vestibular schwannoma (VS): a comparison between cystic-type and solid-type VS. Int J Radiat Oncol Biol Phys 48:1395–1401PubMedGoogle Scholar
  22. Tos M, Thomsen J (1992) Proposal of classification of tumor size in acoustic neuroma surgery. In: Tos M, Thomsen J (eds) Proceedings of the first international conference on acoustic neuroma. Kugler, AmsterdamGoogle Scholar
  23. Williams JA (2002) Fractionated stereotactic radiotherapy for acoustic neuromas. Int J Radiat Oncol Biol Phys 54:500–504PubMedGoogle Scholar
  24. Yamakami I, Uchino Y, Kobayashi E et al. (2003) Conservative management, gamma-knife radiosurgery, and microsurgery for acoustic neurinomas: a systematic review of outcome and risk of three therapeutic options. Neurol Res 25:682–690PubMedGoogle Scholar

Zu Arteriovenöse Malformationen

  1. Chang JH, Chang JW, Park YG, Chung S (2000) Factors related to complete occlusion of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg 93 (Suppl 3):96–101PubMedGoogle Scholar
  2. Colombo F, Pozza F, Chierego G et al. (1994) Linear accelerator radiosurgery of cerebral arteriovenous malformations: an update. Neurosurgery 34:14–21PubMedGoogle Scholar
  3. Deruty R, Pelissou-Guyotat I, Amat D et al. (1996) Complications after multidisciplinary treatment of cerebral arteriovenous malformations. Acta Neurochir (Wien) 138:119–131Google Scholar
  4. Deruty R, Pelissou-Guyotat I, Morel C et al. (1998) Reflections on the management of cerebral arteriovenous malformations. Surg Neurol 50:245–255PubMedGoogle Scholar
  5. Dion JE, Mathis JM (1994) Cranial arteriovenous malformations: The role of embolization and stereotactic surgery. Neurosurg Clin North Am 5:459–474Google Scholar
  6. Engenhart R, Wowra B, Debus J et al. (1994) The role of high-dose, single-fraction irradiation in small and large intracranial AVMs. Int J Radiat Oncol Biol Phys 30:521–529PubMedGoogle Scholar
  7. Fajardo LF (1992) Morphology of radiation effects on normal tissue. In: Perez CA, Brady LW (eds) Principles and practice of radiation oncology 2nd ed. Lippincott, Philadelphia New York London Hagerstown, pp114–123Google Scholar
  8. Fleetwood IG, Marcellus ML, Levy RP et al. (2003) Deep arteriovenous malformations of the basal ganglia and thalamus: natural history. J Neurosurg 98:747–750PubMedGoogle Scholar
  9. Flickinger JC, Schell MC, Larson DA (1990) Estimation of complications for linear accelerator radio-surgery with the integrated logistic formula. Int J Radiat Oncol Biol Phys 19:143–148PubMedGoogle Scholar
  10. Flickinger JC, Pollock BE, Kondziolka D et al. (1996) LD A dose-response analysis of arteriovenous malformation obliteration after radiosurgery. Int J Radial Oncol Biol Phys 36:873–879Google Scholar
  11. Flickinger JC, Kondziolka D, Maitz AH et al. (1998) Analysis of neurological sequelae from radio-surgery of AVMs: how location affects outcome. Int J Radiat Oncol Biol Phys 40:273–278PubMedGoogle Scholar
  12. Flickinger JC, Kondziolka D, Lunsford LD et al. (1999) A multi-institutional analysis of complication outcomes after arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys 44:67–74PubMedGoogle Scholar
  13. Flickinger JC, Kondziolka D, Maitz AH et al. (2002) An analysis of the dose-response for arteriovenous malformation radiosurgery and other factors affecting obliteration. Radiother Oncol 63:347–354PubMedGoogle Scholar
  14. Friedman WA, Bova FJ, Bollampally S et al. (2003) Analysis of factors predictive of success or complications in arteriovenous malformation radiosurgery. Neurosurgery 52:296–308PubMedGoogle Scholar
  15. Graf CJ, Perret GE, Torner JC (1983) Bleeding from cerebral arteriovenous malformations as part of their natural history. J Neurosurg 58:331–337PubMedGoogle Scholar
  16. Han PP, Ponce FA, Spetzler RF (2003) Intention-to-treat analysis of Spetzler-Martin grades IV and V AVMs: natural history and treatment paradigm. J Neurosurg 98:3–7PubMedGoogle Scholar
  17. Kocher M, Voges J, Mueller R-P et al. (1998) Linac radiosurgery for patients with a limited number of brain metastases. J Radiosurg 1:9–15Google Scholar
  18. Laing RW, Childs J, Brada M (1992) Failure of conventionally fractionated radiotherapy to decrease the risk of hemorrhage in inoperable AVMs. Neurosurgery 30:872–875PubMedGoogle Scholar
  19. Lindquist C, Steiner L, Blomgren H et al. (1986) Stereotactic radiation therapy of intracranial arteriovenous malformations. Acta Radiol 368 (Suppl):610–613Google Scholar
  20. Miyawaki L, Dowd C, Wara W et al. (1999) Five year results of linac radiosurgery for arteriovenous malformations: outcome for large avms. Int J Radiat Oncol Biol Phys 44:1089–1106PubMedGoogle Scholar
  21. Nakata H, Yoshimine T, Murasawa A et al. (1995) Early bloodbrain barrier dis-ruption after high-dose single-fraction irradiation in rats. Acta Neurochir (Wien) 136:82–86PubMedGoogle Scholar
  22. Pollock BE, Kline RW, Stafford SL (2000) The rationale and technique of staged-volume arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys 48:817–824PubMedGoogle Scholar
  23. Poulsen MG (1987) Arteriovenous malformation – a summary of 6 cases treated with radiation therapy. Int J Radiat Oncol Biol Phys 13:1553–1557PubMedGoogle Scholar
  24. Schlienger M, Atlan D, Lefkopoulos et al. (2000) Linac radiosurgery for cerebral arteriovenous malformations: results in 169 patients. Int J Radiat Oncol Biol Phys 46:1135–1142PubMedGoogle Scholar
  25. Shin M, Kawamoto S, Kurita H et al. (2002) Retrospective analysis of a 10-year experience of stereo-tactic radiosurgery for AVMs in children and adolescents. J Neurosurg 97:779–784PubMedGoogle Scholar
  26. Spetzler RF, Martin NA (1986) A proposed grading system for arteriovenous malformations. J Neurosurg 65:476–483PubMedGoogle Scholar
  27. Stapf C, Mast H, Sciacca RR et al. (2003) The New York Islands AVM Study: design, study progress, and initial results. Stroke 34:29–33Google Scholar
  28. Stefani MA, Porter PJ, terBrugge KG et al. (2002) Large and deep brain arteriovenous malformations are associated with risk of future hemorrhage. Stroke 33:1220–1224PubMedGoogle Scholar
  29. Steiner L, Lindquist C, Adler JR et al. (1992) Clinical outcome of radiosurgery for cerebral arteriovenous malformations. J Neurosurg 77:1–8PubMedGoogle Scholar
  30. van der Kogel AJ (1991) Central nervous system radiation injury in small animal models. In: Gutin PH, Leibel SA, Sheline GE (eds) Radiation injury to the nervous system. Raven press, New York, pp 91–112Google Scholar
  31. Voges J, Treuer H, Sturm V et al. (1996) Risk analysis of linear accelerator radiosurgery. Int J Radiat Oncol Biol Phys 36:1055–1063PubMedGoogle Scholar
  32. Voges J, Treuer H, Lehrke R et al. (1997) Risk analysis of LINAC radiosurgery in patients with arteriovenous malformation (AVM). Acta Neurochir (Wien) 68 (Suppl):118–123Google Scholar
  33. Wilms M, Kocher M, Makoski H-B et al. (2003) Langzeitergebnisse der semistereotaktischen konventionell fraktionierten Strahlenbehandlung arterio-venöser Malformationen des Gehirns. Strahlenther Onkol 179 (Suppl):69Google Scholar
  34. Wolbers JG, Mol HC, Kralendonk JH et al. (1999) Stereotactic radiosurgery with adjusted linear accelerator for cerebral arteriovenous malformations: preliminary results in the Netherlands. Ned Tijdschr Geneeskd 143:1215–1221PubMedGoogle Scholar

Zu Chordome

  1. Austin-Seymour M, Munzenrider J, Goitein M et al. (1989) Fractionated proton radiation therapy for chordomas and low grade chondrosarcomas of the base of skull. J Neurosurg 70:13–17PubMedGoogle Scholar
  2. Castro JR, Linstadt DE, Bahary J-P et al. (1994) Experience in charged particle irradiation of tumors of the skull base: 1977–1992. Int J Radiat Oncol Biol Phys 29:647–655PubMedGoogle Scholar
  3. Catton C, O’Sullivan B, Bell R et al. (1996) Chordoma: long-term follow-up after radical photon irradiation. Radiother Oncol 41:67–72PubMedGoogle Scholar
  4. Debus J, Schulz-Ertner D, Schad L et al. (2000) Stereotactic fractionated radiotherapy for chordomas and chondrosarcomas of the skull base. Int J Radiat Oncol Biol Phys 47:591–596PubMedGoogle Scholar
  5. Fuller DB, Bloom JG (1988) Radiotherapy for chordoma. Int J Radiat Oncol Biol Phys 15:331–339PubMedGoogle Scholar
  6. Hug EB, Loredo LN, Slater JD et al. (1999) Proton radiation therapy for chordomas and chondro-sarcomas of the skull base. J Neurosurg 91:432–439PubMedGoogle Scholar
  7. Munzenrider JE, Liebsch NJ (1999) Proton therapy for tumors of the skull base. Strahlenther Onkol 175 (Suppl II):57–63PubMedGoogle Scholar
  8. Muthukumar N, Kondziolka D, Lunsford LD et al. (1998) Stereotactic radiosurgery for chordoma and chondrosarcoma: further experience. Int J Radiat Oncol Biol Phys 41:387–392PubMedGoogle Scholar
  9. Noel G, Habrand JL, Jauffret E et al. (2003) Radiation therapy for chordoma and chondrosarcoma of the skull base and the cervical spine. Prognostic factors and patterns of failure. Strahlenther Onkol 179:241–248PubMedGoogle Scholar
  10. O’Connell JX, Laurette GR, Liebsch NJ et al. (1994) Base of skull chordoma. Cancer 74:2261–2267PubMedGoogle Scholar
  11. Rich TA, Schiller A, Suit HD et al. (1985) Clinical and pathologic review of 48 cases of chordoma. Cancer 56:182–187PubMedGoogle Scholar
  12. Romero J, Cardenes H, la Torre A et al. (1993) Chordoma: results of radiation therapy in eighteen patients. Radiother Oncol 29:27–32PubMedGoogle Scholar
  13. Schulz-Ertner D, Nikoghosyan A, Thilmann C et al. (2003) Carbon ion radiotherapy for chordomas and low-grade chondrosarcomas of the skull base. Strahlenther Onkol 179:598–605PubMedGoogle Scholar
  14. Zorlu F, Gurkaynak M, Yildiz F et al. (2000) Conventional external radiotherapy in the management of clivus chordomas with overt residual disease. Neurol Sci 21:203–207PubMedGoogle Scholar

Zu Glomustumor bzw. Chemodektom

  1. Cole JM, Beiler D (1994) Long-term results of treatment of glomus jugulare and glomus vagale tumors with radiotherapy. Laryngoscope 104:1461 ffPubMedGoogle Scholar
  2. Cummings BJ, Beale FA, Garrett PG et al. (1984) The treatment of glomus tumors in the temporal bone by megavoltage radiation. Cancer 53:2635 ffPubMedGoogle Scholar
  3. Eustacchio S, Trummer M, Unger F, et al. (2002) The role of gamma knife radiosurgery in the management of glomus jugulare tumors. Acta Neurochir (Suppl) 84:91 ffGoogle Scholar
  4. Fisch U, Mattox P (1988) Microsurgery of the skull base. Thieme, New YorkGoogle Scholar
  5. Foote RL, Pollock BE, Gorman DA et al. (2002) Glomus jugulare tumor: tumor control and complication after stereotactic radiosurgery. Head Neck 24:332 ffPubMedGoogle Scholar
  6. Hinerman RW, Mendenhall WM, Amdur RJ et al. (2001) Definitive radiotherapy in the management of chemodectomas arising in the temporal bone, carotid body and glomus vagale. Head Neck 23:363 ffPubMedGoogle Scholar
  7. Jackson AW, Koshiba R (1974) Treatment of glomus jugulare tumors by radiotherapy. Proc R Soc Med 67:267 ffPubMedGoogle Scholar
  8. Kim JA, Elkon D, Lim ML, Constable WC (1980) Optimum dose of radiotherapy for chemodectomas in the middle ear. Int J Radiat Oncol Biol Phys 6:815 ffPubMedGoogle Scholar
  9. Lalwani AK, Jackler RK, Gutin PH (1993) Lethal fibrosarcoma complicating radiation therapy for bening glomus jugulare tumor. Am J Otol 14:398 ffPubMedGoogle Scholar
  10. Lim M, Gibbs IC, Adler JR et al. (2003) The efficacy of linear accelerator stereotactic radiosurgery in treating glomus jugulare tumors. Technol Cancer Res Treat 2:261 ffPubMedGoogle Scholar
  11. Liscak R, Vladyka V, Wowra B et al. (1999) Gamma knife radiosurgery of the glomus jugulare tumor – early multicentre experience. Acta Neurochir 141:1141 ffPubMedGoogle Scholar
  12. Maarouf M, Voges J, Landwehr P et al. (2003) Stereotactic linear accelerator based radiosurgery for the treatment of patients with glomus jugulare tumors. Cancer 97:1093 ffPubMedGoogle Scholar
  13. Million RR, Cassisi NJ, Mancuso AA, Stringer SP (1994) Chemodectomas (glomus body tumors). In: Million RR, Cassisi NJ (eds) Management of head and neck cancer. A multidisciplinary approach. 2nd edn. Philadelphia, pp 765–783Google Scholar
  14. Pohl F, Thile W, Koelbl O, Flentje M (2003) Retrospective Analyse von 12 Patienten mit Glomus jugulare Tumoren nach Radiotherapie. Strahlenther Onkol 179:3 ffGoogle Scholar
  15. Powell S Peters N, Hartmer C (1992) Chemodectoma of the head and neck: Results of treatment in 84 patients. Int J Radiat Oncol Biol Phys 22:919 ffPubMedGoogle Scholar
  16. Sharma PD, Johnson AP, Whitton AC (1984) Radiotherapy for jugulo-tympanic paragangliomas (glomus jugulare tumors). J Laryngol Otol 98:621 ffPubMedGoogle Scholar
  17. Springate SC, Weichselbaum RR (1990) Radiation or surgery for chemodectomas of the temporal bone: A review of local control and complications. Head Neck 12:303 ffPubMedGoogle Scholar
  18. Wang ML, Hussey DH, Doorbos JF et al. (1988) Chemodectoma of temporal bone: a comparison of surgical and radiotherapeutic results. Int J Radiat Oncol Biol Phys 14:643 ffPubMedGoogle Scholar
  19. Zabel A, Milker-Zabel S, Schulz-Erner D et al. (2003) Fraktionierte stereotaktische Konformationsbestrahlung von Glomus jugulare Tumoren. Strahlenther Onkol 179:67 ffGoogle Scholar

Zu Juveniles Nasen-Rachen-Fibrom

  1. Antonelli AR, Cappiello J, Donajo CA et al. (1997) Diagnosis, staging and treatment of juvenile nasopharyngeal angiofibroma. Laryngoscope 97:1319–1325Google Scholar
  2. Chandler JR, Goulding R, Moskowitz L et al. (1984) Nasopharyngeal angiofibromas: Staging and management. Ann Otol Rhinol Laryngol 93:322–329PubMedGoogle Scholar
  3. Cummings BJ, Blend R, Keane T (1984) Primary radiation therapy for juvenile nasopharyngeal angiofibroma. Laryngoscope 94:1599–1605PubMedGoogle Scholar
  4. Economou TS, Abemayor E, Ward PH (1988) Juvenile nasopharyngeal angiofibroma: an update of the UCLA experience, 1960–1985. Laryngoscope 98:170–175PubMedGoogle Scholar
  5. Fields JN, Halverson KJ, Devineni VR et al. (1990) Juvenile nasopharyngeal angiofibroma: efficacy of radiation therapy. Radiology 176:263–265PubMedGoogle Scholar
  6. Jereb J, Anggard A, Baryd I (1979) Juvenile nasopharyngeal angiofibroma. A clinical study of 69 cases. Acta Radiol Ther Phys Biol 9:302–310Google Scholar
  7. Kuppersmith RB, Teh BS, Donovan DT et al. (2000) The use of intensity modulated radiotherapy for the treatment of extensive and recurrent juvenile angiofibroma. Int J Pediatr Otorhinolaryngol 52:261–268PubMedGoogle Scholar
  8. Lee JT, Chen P, Safa A et al. (2002) The role of radiation in the treatment of advanced juvenile angio-fibroma. Laryngoscope 112 (7 Pt 1):1213–1220PubMedGoogle Scholar
  9. Makek MS, Andrews JC, Fisch U (1989) Malignant transformation of a nasopharyngeal angiofibroma. Laryngoscope 99:1088–1092PubMedGoogle Scholar
  10. McGahan RA, Durrance FY, Parke RB Jr et al. (1989) The treatment of advanced juvenile nasopharyngeal angiofibroma. Int J Radiat Oncol Biol Phys 17:1067–1072PubMedGoogle Scholar
  11. Million RR, Cassisi NJ, Mancuso AA, Stringer SP (1994) Juvenile Angiofibroma. In: Million RR, Cassisi NJ (eds) Management of head and neck cancer. A multidisciplinary approach. 2nd edn. Philadelphia, pp 627–641Google Scholar
  12. Reddy KA, Mendenhall WM, Amdur RJ et al. (2001) Long-term results of radiation therapy for juvenile nasopharyngeal angiofibroma. Am J Otolaryngol 22:172–175PubMedGoogle Scholar
  13. Robinson ACR, Khouri GG, Ash DV et al. (1989) Evaluation of response following irradiation of juvenile angiofibromas. Br J Radiol 62:245–247PubMedGoogle Scholar
  14. Sinha PP, Aziz HI (1978) Juvenile nasopharyngeal angiofibroma. A report of seven cases. Radiology 127(2):501–503PubMedGoogle Scholar
  15. Spector JG (1998) Management of juvenile angiofibromata. Laryngoscope 98:1016–1026Google Scholar
  16. Waldman SR, Levine HL, Astor F et al. (1981) Surgical experience with nasopharyngeal angiofibroma. Arch Otolaryngol 107:677–682PubMedGoogle Scholar

Zu Pterygium

  1. Alaniz-Camino F (1982) The use of postoperative beta radiation in the treatment of pterygia. Ophthalmic Surg 3:1022–1025Google Scholar
  2. Amano S, Motoyama Y, Oshika T, Eguchi S, Eguchi K (2000) Comparative study of intraoperative mitomycin C and beta irradiation in pterygium surgery. Br J Ophthalmol 84:618–621PubMedGoogle Scholar
  3. Beyer DC (1991) Pterygia: single-fraction post-operative beta irradiation. Radiology 178:569–571PubMedGoogle Scholar
  4. Chen PO, Ariyasu RG, Kaza V, Labreé L, McDonnell PJ (1995) A randomized trial comparing mitomycin C and conjunctival autograft after excision of primary pterygium. Am J Ophthal 12:151–160Google Scholar
  5. De Keizer RJW (1982) Pterygium excision with or without post-operative irradiation. Documenta Ophthalmologica 52:309–315PubMedGoogle Scholar
  6. De Keizer RJ (1997) Pterygium excision with free conjunctival autograft (FCG) versus post-operative strontium 90 (90Sr) beta-irradiation. A prospective study. Int Ophthalmol 21:335–341PubMedGoogle Scholar
  7. Fukushima S, Onoue T, Onoue T, Ozeki S (1999) Post-operative irradiation of pterygium with 90Sr eye applicator. Int J Radiation Oncol Biol Phys 43:597–600Google Scholar
  8. Jürgenliemk-Schulz IM, Hartman LJC, Roesink JM et al. (2004) Prevention of pterygium recurrence by postoperative single-dose beta-irradiation: a prospective randomized clinical double-blind trial. Int J Radiat Oncol Biol Phys 59: 1138–1147PubMedGoogle Scholar
  9. MacKenzie FS, Hirst LW, Kynaston B, Bain C (1991) Recurrence rate and complications after beta irradiation for ptergyia. Ophthalmology 98:1776–1780PubMedGoogle Scholar
  10. Mahar PS, Nwokora GE (1993) Role of mitomycin C in pterygium surgery. Br J Ophthalmol 77:433–435PubMedGoogle Scholar
  11. Monteiro-Grillo I, Gaspar L, Monteiro-Grillo M, Pires F, Ribeiro da Silva JM (2000) Post-operative irradiation of primary or recurrent pterygium: results and sequalae. Int J Radiation Oncol Biol Phys 48:865–869Google Scholar
  12. Nishimura Y, Nakai A, Yoshimasu T et al. (2000) Long-term results of fractionated strontium-90 therapy for pterygia. Int J Radiat Oncol Biol Phys 46:137–141PubMedGoogle Scholar
  13. Rubinfield RS, Pfister RR, Stein RM et al. (1992) Serious complication of topical mitomycin C after pterygium surgery. Ophthalmology 99:1647–1654Google Scholar
  14. Paijc B, Pugnale-Verilotte N, Greiner RH, Paijc D, Eggspuhler A (2002) Results of strontium-yttrium-90 for pterygia. J Fr Ophthalmol 25:473–479Google Scholar
  15. Pajic B, Pallas A, Aebersold D, Gruber G, Greiner RH (2004) Prospective study on exclusive, nonsurgical strontium-/yttrium-90 irradiation of pterygia. Strahlenther Onkol 180:510–516PubMedGoogle Scholar
  16. Parayani SB, Scott WP, Wells JW Jr et al. (1994) Management of pterygium with surgery and radiation therapy. The North Florida Pterygium Study Group. Int J Radiat Oncol Biol Phys 28:101–103Google Scholar
  17. Schultze J, Hinrichs M, Kimmig B (1996) The results of strontium-90 contact therapy to prevent the recurrence of pterygium. Germ J Ophthalmol 5:207–210Google Scholar
  18. Smith RA, Dzugan SA, Kosko P (2001) Postoperative beta irradiation for control pterygium. J Miss State Med Assoc 42:167–169PubMedGoogle Scholar
  19. Wesberry JM, Wesberry JM Sr (1993) Optimal use of beta irradiation in the treatment of pterygia. South Med J 86:633–637PubMedGoogle Scholar
  20. Wilder RB, Buatti JM, Kittelson JM et al. (1992) Pterygium treated with excision and post-operative beta-irradiation. Int J Radiation Oncol Biol Phys 23:533–537Google Scholar
  21. Willner J, Flentje M, Lieb W et al. (2001) Soft X-ray therapy of recurrent pterygium-an alternative to Sr-90 eye applicators. Strahlenther Oncol 177:404–409Google Scholar

Zu Hämangiom der Aderhaut

  1. Augsburger JJ, Freire J, Brady LW (1997) Radiation therapy for choroidal and retinal hemangiomas. In: Wiegel T, Bornfeld N, Foerster MH, Hinkelbein W (eds) Radiotherapy of ocular disease. Front Radiat Ther Oncol 30:pp 265–280Google Scholar
  2. Frau E, Rumen F, Noel G et al. (2004) Low-dose proton beam therapy for circumscribed choroidal hemangiomas. Arch Ophthalmol 122:1471–1475PubMedGoogle Scholar
  3. Hannouche D, Frau E, Desjardins L et al. (1997) Efficacy of proton therapy in circumscribed choroidal hemangiomas associated with serous retinal detachment. Opthalmology 104:1780–1784Google Scholar
  4. Kivela T, Tenhunen M, Joensuu T et al. (2003) Stereotactic radiotherapy of symptomatic circumscribed choroidal hemangiomas. Opthalmology 110:1977–1982Google Scholar
  5. Kreusel KM, Bornfeld N, Lommatzsch A et al. (1998) Ruthenium-106 brachytherapy for peripheral retinal capillary hemangioma. Ophthalmology 105(8):1386–1392PubMedGoogle Scholar
  6. Madreperla SA, Hungerford JL, Plowman PN et al. (1997) Choroidal hemangiomas – visual and anatomic results of treatment by photocoagulation or radiation therapy. Ophthalmology 104:1773–1779PubMedGoogle Scholar
  7. Madreperla SA (2001) Choroidal hemangioma treated with photodynamic therapy using verteporfin. Arch Ophthalmology 119:1606–1610Google Scholar
  8. Mashayekhi A, Shields CL (2003) Circumscribed choroidal hemangioma. Curr Opin Ophthalmol 14:142–149PubMedGoogle Scholar
  9. Plowman PN, Hungerford JL (1997) Radiotherapy for ocular angiomas. Br J Ophthalmol 81:258–259PubMedGoogle Scholar
  10. Sanborn GE, Augsburger JJ, Shields JA (1982) Treatment of circumscribed choroidal hemangiomas. Opthalmology 89:1374–1380Google Scholar
  11. Schilling H, Sauerwein W, Lommatzsch A et al. (1997) Long-term results after low dose ocular irradiation for choroidal hemangiomas. Br J Ophthalmol 81:267–273PubMedGoogle Scholar
  12. Shields CL, Shields JA, Barrett J et al. (1995) Vasoproliferative tumors of the ocular fundus. Classification and clinical manifestations in 103 patients. Arch Ophthalmol 113:615–623PubMedGoogle Scholar
  13. Shields CL, Honavar SC, Shields JA et al. (2001) Circumscribed choroidal hemangioma. Clinical manifestations and factors predictive of visual outcome in 200 consecutive cases. Ophthalmology 108:2237–2248PubMedGoogle Scholar
  14. Shields JA, Shields CL, Materin MA et al. (2004) Changing concepts in management of circumscribed choroidal hemangioma. The 2003 J Howard Stokes Lecture (Part 1). Ophtalmic Surg Lasers 35:383–393Google Scholar
  15. Witschel H, Font RL (1976) Hemangioma of the choroid: A clinicopathologic study of 71 cases and a review of the literature. Surv Ophthalmol 20:415–431PubMedGoogle Scholar
  16. Zografos L, Gailloud C, Bercher L (1989) Irradiation treatment of choroidal hemangiomas. Fr Ophthalmol 12:797–807Google Scholar
  17. Zografos L, Bercher L, Chamot L et al. (1996) Cobalt-60 treatment of choroidal hemangiomas. Am J Opthalmol 121:190–199Google Scholar
  18. Zografos L, Egger E, Bercher L et al. (1998) Proton beam irradiation of choroidal hemangiomas. Am J Ophthalmol 126:261–268PubMedGoogle Scholar

Zu Altersbedingte Makuladegeneration

  1. Bergink GJ, Deutman AF, Van den Broek JFCM et al. (1994) Radiation therapy for subfoveal choroidal neovascular membranes in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 232:591–598PubMedGoogle Scholar
  2. Bergink GJ, Hoyng CB, Van der Maazen RWM et al. (1998) A randomized controlled clinical trial on the efficacy of radiation therapy in the control of subfoveal choroidal neovascularization in ages-related macular degeneration: Radiation versus observation. Graefes Arch Clin Exp Ophthalmol 236:321–325PubMedGoogle Scholar
  3. Berta A, Vezendi L, Vamosi P (1995) Irradiation of macular subretinal neovascularisation using ruthenium applicators. Szemeset (Hung J Ophthalmol) 13:67–75Google Scholar
  4. Chakravarty M, Gardiner TA, Archer DB et al. (1993) Treatment of age-related subfoveal choroidal neovascular membranes by teletherapy: A pilot study. Br J Ophthalmol 77:265–273Google Scholar
  5. Char DH, Irvine AI, Posner MD et al. (1999) Randomized trial of radiation for age-related macular degeneration. Am J Ophthalmol 127:574–578PubMedGoogle Scholar
  6. Fine SL, Maguire MG (2001) It is not time to abandon radiotherapy for neovascular age-related macular degeneration. Arch Ophthalmol 119:275–276PubMedGoogle Scholar
  7. Finger PT, Berson A, Ng T, Szchecter A (1999) Ophthalmic plaque radiation therapy for age-related macular degeneration associated with subretinal neovascularisation. Am J Ophthalmol 127:170–177PubMedGoogle Scholar
  8. Finger PT, Berson A, Sherr DA, Riley R, Balkin RA, Bosworth JL (1996) Radiation therapy for subretinal neovascularisation. Ophthalmology 103:878–889PubMedGoogle Scholar
  9. Finger PT, Immonen I, Freire J, Brown G (2001) Brachytherapy for macular degeneration associated with subretinal neovascularisation. In: Alberti WE, Richard G, Sagerman RH (eds) Age-related macular degeneration. Current treatment concepts. Springer, Berlin Heidelberg New York Tokio, pp 167–173Google Scholar
  10. Hart PM, Chakravarthy U, MacKenzie G et al. (1996) Teletherapy for subfoveal choroidal neovascular-isation of age related macular degeneration: Results of follow up in a non-randomised study. Br J Ophthalmol 80:1046–1050PubMedGoogle Scholar
  11. Hart PM, Chakravarthy U, Mackenzie G et al. (2002) Visual outcomes in the subfoveal radiotherapy study. Arch Ophthalmol 120:1029–1039PubMedGoogle Scholar
  12. Hoeller U, Fuisting B, Schwartz R, Roeper B, Richard G, Alberti W (2005) Results of radiotherapy of subfoveal neovascularization with 16 and 20 Gy. Eye 19(11):1151–1156PubMedGoogle Scholar
  13. Hollick EJ, Goble RR, Knowles PJ et al. (1996) Radiotherapy treatment of age-related subfoveal neovascular membranes in patients with good vision. Eye 10:609–616PubMedGoogle Scholar
  14. International ARM Epidemiological Study Group (1995) An international classification system for ARM. Surv Ophthalmol 39:367–374Google Scholar
  15. Jaacola A, Heikkonen J, Tomilla et al. (1998 a) Strontium plaque irradiation of subfoveal neovascular membranes in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 236:24–30Google Scholar
  16. Jaakola A, Heikkonen J, Tarkkanen A, Immonen I (1998 b) Visual function after Strontium-90 plaque irradiation in patients with age-related subfoveal choroidal neovascularisation. Acta Ophthalmol Scand 76:1–5Google Scholar
  17. Kobayashi H, Kobayashi K (2000) Age-related macular degeneration: long-term results of radiotherapy for subfoveal neovascular membranes. Am J Ophtalmol 130:617–635Google Scholar
  18. Marcus DM, Sheils WC, Johnson MH et al. (2001) External beam irradiation of subfoveal choroidal neovascularisation complicating age-related macular degeneration: one-year-results of a prospective, double-masked, randomised clinical trial. Arch Ophthalmol 119:171–180PubMedGoogle Scholar
  19. Mauget-Faysse M, Chiquet C, Milea D et al. (1999) Long term results of radiotherapy for subfoveal choroidal neovascularistion in age related macular degeneration. Br J Ophthalmol 83:923–928PubMedGoogle Scholar
  20. Miller JW, Walsh AW, Kramer M et al. (1995) Photodynamic therapy of experimental choroidal neo-vascularisation using lipoprotein-delivered benzoporphyrin. Arch Ophthalmol 113:810–818PubMedGoogle Scholar
  21. Munzenrider JE, Castro JR (1993) Particle treatment of the eye. In: Alberti WE, Sagerman RH (eds) Radiotherapy of intraocular and orbital tumors. Springer, Berlin Heidelberg New York Tokio, pp 45–55Google Scholar
  22. Pauleikhoff D, Holz FG (1996) Die altersabhängige Makuladegeneration. Ophthalmologe 93:299–315PubMedGoogle Scholar
  23. Pöstgens H, Bodanowitz S, Kroll P (1997) Low dose radiation therapy for age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 235:656–661PubMedGoogle Scholar
  24. Prettenhofer M, Haas A, Mayer R, Oechs A et al. (1998) The photon therapy of subfoveal choroidal neovascularisation in age-dependant macular degeneration – the result of a prospective study in 40 patients. Strahlenther Onkol 174:613–617PubMedGoogle Scholar
  25. RAD (The Radiation Therapy for Age-related Macular Degeneration Study) (1999) A prospectiv, randomized, double-masked trial on radiation therapy for neovascular age-related degeneration. Ophthalmol 106:2239–2247Google Scholar
  26. Sasai K, Murara R, Mandai M et al. (1997) Radiation therapy for ocular choroidal neovascularization (phase I/II study): Preliminary report. Int J Radiat Oncol Biol Phys 39:173–178PubMedGoogle Scholar
  27. Spaide RF, Guyer DR, McCormick B et al. (1998) External beam radiation therapy for choroidal neo-vascularisation. Ophthalmology 105:24–30PubMedGoogle Scholar
  28. Staar S, Krott R, Mueller R-P et al. (1999) External beam radiotherapy for subretinal neovascularisation in age-related macular degeneration. Is this treatment efficient? Int J Radiat Oncol Biol Phys 45:467–473PubMedGoogle Scholar
  29. Stalmans P, Leys A, Van Limbergen E (1997) External beam radiotherapy (20 Gy, 2 fractions) fails to control the growth of choroidal neovascularization in age-related macular degeneration: A review of 111 cases. Retina 17:481–492PubMedGoogle Scholar
  30. Thölen A, Meister A, Bernasconi PP et al. (1998) Radiotherapie von subretinalen Neovaskularisations-membranen bei altersabhängiger Makuladegeneration. Ophthalmologe 95:691–698PubMedGoogle Scholar
  31. Treatment of Age-related Macular Degeneration with Photodynamic Therapy (TAP) Study Group (1999) Photodynamic therapy of subfoveal choroidal neovascularisation in age-related macular degeneration with verteporfin. One-year results of two randomised clinical trials-TAP report. I Arch Ophthalmol 117:1329–1345Google Scholar
  32. Valmaggia C, Ries G, Ballinari P (2002) Radiotherapy for subfoveal choroidal neovascularization in age-related macular degeneration: A randomized clinical trial. Am J Ophthalmology 133:521–529Google Scholar
  33. Yonemoto LT, Slater JD, Blacharski PB et al. (2000) Dose response in the treatment of subfoveal choroidal neovascularization in age-related macular degeneration: Results of a phase I/II dose escalation study using proton radiotherapy. J Radiosurg 3:47–54Google Scholar

Zu Endokrine Orbitopathie

  1. Bahn RS, Dutton CM, Naff N et al. (1998) Thyrotropin receptor expression in Graves’ orbital adipose/connective tissues: potential autoantigen in Graves’ ophthalmopathy. J Clin Endocrinol Metab 83:998–1002PubMedGoogle Scholar
  2. Bartalena L, Marcocci C, Chiovato L et al. (1983) Orbital cobalt irradiation combined with systemic corticosteroids for Graves’ ophthalmopathy: comparison with systemic corticosteroids alone. J Clin Endocrinol Metab 56:1139–1144PubMedGoogle Scholar
  3. Broerse JJ, Snijders-Keilholz A, Jansen JTM et al. (1999) Assessment of carcinogenic risk for treatment of Graves’ ophthalmopathy in dependence on age and irradiation geometry. Radiother Oncol 53:205–208PubMedGoogle Scholar
  4. Burch HB, Wartofsky L (1993) Graves’ ophthalmopathy. Current concepts regarding pathogenesis and management. Endocr Rev 146:747 ffGoogle Scholar
  5. Donaldson SS, Bagshaw MA, Kriss JP et al. (1973) Supervoltage orbital radiotherapy for Graves’ ophthalmo-pathy. J Clin Endocrinol Metab 37:276–285PubMedGoogle Scholar
  6. Donaldson SS, McDougall IR, Kriss JP (1993) Graves’ Disease. In: Alberti WE, Sagerman RH (eds) Radiotherapy of intraocular and orbital tumors. Springer, Berlin Heidelberg New York Tokio, pp 191–197Google Scholar
  7. Donaldson SS, McDougall IR (2002) Graves’ Disease. Radiotherapy of intraocular and orbital tumors. In: Alberti WE, Sagerman RH (eds) Radiotherapy of intraocular and orbital tumors. 2nd edn. Springer, Berlin Heidelberg New York Tokio, pp 145–152Google Scholar
  8. Esser J, Sauerwein W, Olbricht T et al. (1995) Corticoid- und Strahlentherapie bei endokriner Orbitopathie. Nuklearmediziner 18:163–177Google Scholar
  9. Friedrich A, Kamprad F, Goldmann A et al. (1997) Clinical importance of radiotherapy in the treatment of Graves’ Disease. In: Wiegel T, Bornfeld N, Foerster MH, Hinkelbein W (eds) Radiotherapy of ocular disease. Front Radiat Ther Oncol (Basel) 30:206–217Google Scholar
  10. Gerling J, Kommerell G, Henne K et al. (2003) Retrobulbar irradiation for thyroid-associated orbitopathy: double blind comparison between 2.4 and 16 Gy. Int J Radiat Oncol Biol Phys 55:182–189PubMedGoogle Scholar
  11. Heyd R, Seegenschmiedt MH, Strassmann G et al. (2003) Radiotherapy of Graves’ Orbitopathy: results of a national survey. Strahlenther Onkol 179:372–376PubMedGoogle Scholar
  12. Hurbli T, Char DH, Harris J et al. (1985) Radiation therapy for thyroid eye diseases. Am J Ophthalmol 99:633–637PubMedGoogle Scholar
  13. Jansen JTM, Broerse J, Zoetelief J, Klein C, Seegenschmiedt MH (2001) Assessment of carcinogenic risk in the treatment of benign disease of knee and shoulder joint. In: Seegenschmiedt MH, Makoski HB (Hrsg) 15. Kolloquium Radioonkologie/Strahlentherapie, Radiotherapie bei gutartigen Erkrankungen. Diplodocus-Verlag, Altenberge, pp 13–15Google Scholar
  14. Jansen JT, Broerse JJ, Zoetelief J, Klein C, Seegenschmiedt HM (2005) Estimation of the carcinogenic risk of radiotherapy of benign diseases from shoulder to heel. Radiother Oncol 76(3):270–277PubMedGoogle Scholar
  15. Kahaly G, Förster G, Pitz S, Rösler HP, Mann W (1997) Aktuelle interdisziplinäre Diagnostik und Therapie der endokrinen Orbitopathie. Dtsch med Wschr 122:27–32PubMedGoogle Scholar
  16. Kinyoun JL, Orcutt JC (1987) Radiation retinopathy. J Am Med Ass 258:610–611Google Scholar
  17. Lloyd WC, Leone CR (1992) Supervoltage orbital radiotherapy in 36 cases of Graves’ disease. Am J Ophthalmol 113:374–380PubMedGoogle Scholar
  18. Marcocci C, Bartalena L, Panicucci M et al. (1987) Orbital cobalt irradiation combined with retrobulbar or systematic corticosteroids for Graves’ ophthalmopathy: a comparative study. Clin Endocrinol 27:33–42Google Scholar
  19. Miller ML, Goldberg SH, Bullock JD (1991) Radiation retinopathy after radiotherapy for thyroid-related ophthalmopathy. Am J Ophthalmol 112:600–601PubMedGoogle Scholar
  20. Mourits M, Koornneef L, Wiersinga WM et al. (1990) Orbital decompression for Graves’ ophthalmopathy by inferomedial plus lateral and by coronal approach. Ophthalmology 97:636–641PubMedGoogle Scholar
  21. Nygaard B, Specht L (1998) Transitory blindness after retrobulbar irradiation of Graves’ ophthalmopathy. Lancet 351:725–726PubMedGoogle Scholar
  22. Marten et al. (1999) RTO 53 (Suppl 1) Abstr. 17Google Scholar
  23. Olivotto IA, Ludgate CM, Allen LH et al. (1985) Supervoltage radiotherapy for Graveś ophthalmopathy: CCABC technique and results. Int J Radiat Oncol Biol Phys 11:2085–2090PubMedGoogle Scholar
  24. Order SE, Donaldson SS (1990) Radiation therapy of benign diseases. A clinical guide. Springer, Berlin Heidelberg New York TokioGoogle Scholar
  25. Palmer D, Greenberg P, Cornell P, Parker RG (1987) Radiation therapy for Graves’ ophthalmopathy. A retrospective analysis. Int J Radiat Oncol Biol Phys 13:1815–1820PubMedGoogle Scholar
  26. Petersen IA, Donaldson SS, McDougall IR, Kriss JP (1990) Prognostic factors in the radiotherapy of Graves’ ophthalmopathy. Int J Radiat Oncol Biol Phys 19:259–264PubMedGoogle Scholar
  27. Prummel MF, Mourits MP, Blank L et al. (1993) Randomized double-blind trial of prednisone versus radiotherapy. In: Graves’ ophthalmopathy. Lancet 342:949–954PubMedGoogle Scholar
  28. Prummel MF, Bakker A, Wiersinga WM et al. (2003) Multi-center study on the characteristics and treatment strategies of patients with Graves’ orbitopathy: first European Group on Graves’ orbitopathy experience. Eur J Endocrinol 148:491–495PubMedGoogle Scholar
  29. Sandler HM, Rubenstein JH, Fowble BL et al. (1989) Results of radiotherapy for thyroid ophthalmopathy. Int J Radiat Oncol Biol Phys 17:823–827PubMedGoogle Scholar
  30. Seegenschmiedt MH, Keilholz L, Gusek-Schneider G et al. (1998) Endokrine Orbitopathie: Vergleich der Langzeitergebnisse und Klassifikationen nach Radiotherapie. Strahlenther Onkol 174:449–456PubMedGoogle Scholar
  31. Snijders-Keilholz A, De Keizer RJW, Goslings BM et al. (1996) Probable risk of tumor induction after retroorbital irradiation for Graves ophthalmopathy. Radiother Oncol 38:69–71PubMedGoogle Scholar
  32. Staar S, Müller RP, Hammer M, Nolte M (1997) Results and prognostic factors in retrobulbar radiotherapy combined with systemic corticosteroids for endocrine orbitopathy (Graves’ Disease). In: Wiegel T, Bornfeld N, Foerster MH, Hinkelbein W (eds) Radiotherapy of ocular disease. Front Radiat Ther Oncol (Basel) 30:206–217Google Scholar
  33. Van Leeuwen FE, Klokman WJ, Hagenbeek A et al. (1994) Second cancer risk following Hodgkin’s Disease: a 20-year follow-up. J Clin Oncol 12:312–325PubMedGoogle Scholar
  34. Van Ouwerkerk BM, Wijngaarde R, Hennemann G et al. (1985) Radiotherapy of severe ophthalmic Graves’ disease. J Endocrinol Invest 8:241–247PubMedGoogle Scholar
  35. Werner SC (1977) Modification of the classification of the eye changes of Graves’ disease: Recommendations of the Ad Hoc Committee of The American Thyroid Association. J Clin Endocrinol Metab 44:203–204PubMedGoogle Scholar
  36. Wilson WB, Prochoda M (1995) Radiotherapy for thyroid orbitopathy. Effects on extraocular muscle balance. Arch Ophthalmol 113:1420–1425PubMedGoogle Scholar

Zu Reaktive lymphoide Hyperplasie bzw. Pseudotumor orbitae

  1. Ampil FL, Bahrassa FS (1985) Primary orbital lymphoma pseudotumor, case reports and review of radiotherapy literature. J Surg Oncol 30:91–95PubMedGoogle Scholar
  2. Austin-Seymour MM, Donaldson SS, Egbert PR, McDougall IR, Kriss JP (1985) Radiotherapy of lymphoid diseases of the orbit. Int J Radiat Oncol Biol Phys 11:371–379PubMedGoogle Scholar
  3. Barthold HJ, Harvey A, Markoe AM et al. (1986) Treatment of orbital pseudotumors and lymphoma. Am J Clin Oncol 9:527–532PubMedGoogle Scholar
  4. Bogart JA, Sagerman RH, Chung CT (2002) Management of orbital lymphoma. In: Alberti WE, Sagerman RH (eds) Radiotherapy of intraocular and orbital tumors. 2nd edn. Springer, Berlin Heidelberg New York Tokio, pp 153–162Google Scholar
  5. Donaldson SS, McDougall IR, Kriss JP (1993) Graves’ Disease. In: Alberti WE, Sagerman RH (eds) Radiotherapy of intraocular and orbital tumors. Springer, Berlin Heidelberg New York Tokio, pp 191–197Google Scholar
  6. Donaldson SS, McDougall IR (2002) Graves’ Disease. Radiotherapy of intraocular and orbital tumors. In: Alberti WE, Sagerman RH (eds) Radiotherapy of intraocular and orbital tumors. 2nd edn. Springer, Berlin Heidelberg New York Tokio, pp 145–152Google Scholar
  7. Fritzpatrick PI, Macko SL (1984) Lymphoreticular tumors of orbit. Int J Radiat Oncol Biol Phys 10:333–340Google Scholar
  8. Flanders AE, Mafee MF, Rao VM, Choi KH (1989) CT characteristics of orbital pseudotumors and other inflammatory orbital processes. J Comput Assist Tomgr 13:40–47Google Scholar
  9. Fujii H, Fujisada H, Kondo T, Takahashi T, Okada S (1985) Orbital pseudotumor: histopathological classification and treatment. Ophthalmol 190:230–242Google Scholar
  10. Hogan M (1964) Discussion of orbital tumors. In: Boniuk M (ed) Ocular and adnexal tumors: new and controversial aspect. Mosby, St Louis, pp 447–458Google Scholar
  11. Henderson JW (ed) (1980) Orbital tumors, 2nd ed: Lymphocytic inflammatory pseudotumor. Brian C.Decker, New York 1973:512–526Google Scholar
  12. Isaacson PG, Norton AJ (eds) (1994) Extranodal lymphomas: Chapter 7: Lymphomas of the ocular adnexa and eye. Churchill Livingstone, Edinburgh, pp 117–129Google Scholar
  13. Jacobiec FM, Jones JS (1979) Orbital inflammations. In: Duane (ed) Clinical ophthalmology XII. Mosby, PhiladelphiaGoogle Scholar
  14. Jacobiec FA, McClean I, Font FL (1979) Clinicopathologic characteristics of orbital lymphoid hyperplasia. Ophtalmology 86:948–952Google Scholar
  15. Keleti D, Flickinger JC, Hobson SR, Mittal BB (1992) Radiotherapy of lymphoproliferative diseases of the orbit: surveillance of 65 cases. Am J Clin Oncol 15:422–427PubMedGoogle Scholar
  16. Kennerdell JS, Johnson BL, Deutsch M (1979) Radiation treatment of orbital lymphoid hyperplasia. Ophthalmology 86:942–947PubMedGoogle Scholar
  17. Knowles DM, Jacobiec FA (1989) Orbital lymphoid neoplasms: A clinical pathologic study of 60 patients. Cancer 46:576–589Google Scholar
  18. Lambo MJ, Brady LW, Shields CL (1993) Lymphoid tumors of the orbit. In: Alberti WE, Sagerman RH (eds) Radiotherapy of intraocular and orbital tumors. Springer, Berlin Heidelberg New York Tokio, pp 205–216Google Scholar
  19. Lanciano R, Fowble B, Sergott R et al. (1989) The results of radiotherapy for orbital pseudotumor. Int J Radiat Oncol Biol Phys 18:407–411Google Scholar
  20. Leone C, Lloyd T (1985) Treatment protocol for orbital inflammatory disease. Ophthalmology 92:1325–1331PubMedGoogle Scholar
  21. Mittal BB, Deutsch M, Kennerdell J, Johnson B (1986) Paraocular lymphoid tumors. Radiology 159:793–796PubMedGoogle Scholar
  22. Notter M, Kern T, Forrer A, Meister F, Schwegler N (1997) Radiotherapy of pseudotumor orbitae. Front Radiat Ther Oncol 30:180–191PubMedGoogle Scholar
  23. Notter M (2000) Strahlentherapie bei pseudotumor orbitae. In: Seegenschmiedt MH, Makoski HB (eds) Radiotherapie gutartiger Erkrankungen, Symposium 5.–6. März 2000. Diplodocus, Altenberge, S 123–136Google Scholar
  24. Orcutt JC, Garner A, Henk JM, Wright JE (1983) Treatment of idiopathic inflammatory orbital pseudotumot by radiotherapy. Br J Ophthalmol 67:570–574PubMedGoogle Scholar
  25. Rao DV, Cosby K, Smith M, Griffith R (1982) Lymphomas and pseudolymphomas of the orbit (abstr.). Int J Radiat Oncol Biol Phys 8 (Suppl):114Google Scholar
  26. Sergott RC; Gaser JS; Charyulu K (1981) Radiotherapy of idiopathic inflammatory pseudotumor: Indications and results. Arch Ophthalmol 99:853–856Google Scholar
  27. Sigelman J, Jacobiec F (1978) Lymphoid lesions of the conjunctiva: Relation of histopathology and outcome. Ophthalmology 85:818–843PubMedGoogle Scholar
  28. Snijders-Keilholz A, De Keinzer RJW, Goslings BM et al. (1996) Probable risk of tumor induction after retro-orbital irradiation for Grave’s ophthalmopathy. Radiother Oncol 38:69–71PubMedGoogle Scholar
  29. Wagner W, Gerding H, Busse H (1992) Pseudotumor orbitae – ein Chamäleon in Diagnostik und Therapie? Strahlenther Onkol 168:528–535PubMedGoogle Scholar
  30. Waldman TA, Korsmeyer SJ, Bakshi A et al. (1985) Molecular genetic analysis of human lymphoid neoplasms. Immunoglobulin genes and the c-myc oncogene. Ann Int Med 102:497–510Google Scholar
  31. Yamashita K, Kobayashi S, Kando M et al. (1995) Elevated anti neutrophil cytoplasmatic antibody titer in a patient with atypical orbital pseudotumor. Ophthalmologica 209:172–175PubMedGoogle Scholar

Zu Allgemeine Gesichtspunkte

  1. Constant CR, Murley AHG (1987) A clinical method of functional assessment of the shoulder. Clin Orthop Rel Res 214:160–164Google Scholar
  2. Gocht H (1897) Therapeutische Verwendung der Röntgenstrahlen. Fortschr Röntgenstr 1:14Google Scholar
  3. Insall J (1989) Rationale of the knee society clinical rating system. Clinical Orthop 248:13–14Google Scholar
  4. Keilholz L, Seegenschmiedt MH, Sauer R (1998) Radiotherapy of degenerative joint disorders. Indication, technique and clinical results. Strahlenther Onkol 174:243–250PubMedGoogle Scholar
  5. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502PubMedGoogle Scholar
  6. Goldie I, Rosengren B, Moberg E et al. (1970) Evaluation of radiation treatment of painful conditions of the locomotor system. Acta Radiol Ther Phys 9:311–322Google Scholar
  7. Harris WH (1976) Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by Mold arthroplasty. End result study using new method of evaluation. J Bone Joint Surg 51A:737–755Google Scholar
  8. Leer JWH, van Houtte P, Daelaar J (1998) Indications and treatment schedules for irradiation of benign diseases: a survey. Radiother Oncol 48:249–257PubMedGoogle Scholar
  9. Micke O, Seegenschmiedt MH (2002) The German Working Group guidelines for radiation therapy of benign diseases: a multicenter approach in Germany. Int J Radiat Oncol Biol Phys 52:496–513PubMedGoogle Scholar
  10. Morrey BF, An KN, Chao EY (1985) Functional evaluation of the elbow. In: Morrey BF (ed) The elbow and its disorders. Saunders Co., Philadelphia London Toronto, pp 73–91Google Scholar
  11. Order S, Donaldson SS (1999) Radiation Therapy of Benign Diseases, Medical Radiology, 2nd edn. Springer, Berlin Heidelberg New York TokioGoogle Scholar
  12. Plenk HP (1952) Calcifying tendinitis of the shoulder. A critical study of the value of X-ray therapy. Radiology 59:384–389PubMedGoogle Scholar
  13. Rödel F, Kamprad F, Sauer R, Hildebrandt G (2002) Funktionelle und molekulare Aspekte der anti-inflamma-torischen Wirkung niedrig dosierter Radiotherapie: Strahlenther Onkol 178:1–9PubMedGoogle Scholar
  14. Sasaki T, Monji Y, Tsuge Y (1987) High tibial osteotomy combined with anterior displacement of the tibial tubercle for osteoarthritis of knee. Internat J Orthopaedics 10:31–40Google Scholar
  15. Seegenschmiedt MH, Keilholz L, Stecken A, Katalinic A, Sauer R (1996) Radiotherapie bei plantarem Fersensporn. Strahlenther Onkol 172:376–383PubMedGoogle Scholar
  16. Seegenschmiedt MH, Keilholz L (1998) Epicondylopathia humeri and peritendinitis humero-scapularis: evaluation of radiation therapy long-term results and literature review. Radiother Oncol 47:17–28PubMedGoogle Scholar
  17. Seegenschmiedt MH, Katalinic A, Makoski H et al. (2000) Radiation therapy for benign diseases: patterns of care study in Germany. Int J Radiat Oncol Biol Phys 47:195–202PubMedGoogle Scholar
  18. Tegner Y, Lysholm D (1985) Rating systems in evaluation of knee ligament injuries. Clin Orthop 198:43–49PubMedGoogle Scholar
  19. Valtonen EJ, Lilius HG, Malmio K (1975) The value of roentgen irradiation in the treatment of painful degenerative and inflammatory musculo-skeletal conditions. Scand J Rheumatol 4:247–249PubMedGoogle Scholar
  20. von Pannewitz G (1933) Die Röntgentherapie der Arthritis deformans. Klinische und experimentelle Untersuchungen. Ergebn Med Strahlenforsch 6:62–126Google Scholar
  21. von Pannewitz G (1970) Degenerative Erkrankungen. In: Diethelm L, et al. (eds) Handbuch der medizinischen Radiologie Band XVII. Springer, Berlin Heidelberg New York Tokio, S 73–107Google Scholar

Zu Bursitis

  1. Schunck J, Jerosch J (2004) Endoskopische Resektion der Bursa trochanterica. Arthroskopie: 96–99Google Scholar
  2. Leitzen C, Seegenschmiedt MH (2005) Radiotherapie bei Bursitis trochanterica. In: Seegenschmiedt MH, Micke O (eds) Radiotherapie bei gutartigen Erkrankungen, Symposium 11.–12. März 2005, Diplodocus, Altenberge, S 87–96Google Scholar

Zu Peritendinopathia humeroscapularis

  1. Adamietz B, Sauer R (2003) Strahlentherapie beim Impingement-Syndrom des Schultergelenks. Strahlenther Onkol 179(Sondernr 1):1Google Scholar
  2. Baensch WE (1953) Röntgentherapie der Tendinitis calcarea. Strahlentherapie 90:514–518PubMedGoogle Scholar
  3. Goldie I, Rosengren B, Moberg E et al. (1970) Evaluation of radiation treatment of painful conditions of the locomotor system. Acta Radiol Ther Phys 9:311–322Google Scholar
  4. Hassenstein E, Nüsslin F, Hartweg H, Renner KH (1979) Die Strahlenbehandlung der Periarthritis humeroscapularis. Strahlentherapie 155:87–93PubMedGoogle Scholar
  5. Hassenstein EOM (1986) Die Strahlenbehandlung gutartiger Erkrankungen – Indikationen, Ergebnisse und Technik. Röntgen-Blätter 39:21–23Google Scholar
  6. Hess F, Bonmann KH (1955) Die Röntgentherapie der Arthrosen, Spondylosen, der Periarthritis humeroscapularis und der Epicondylitis. Strahlentherapie 96:75–81PubMedGoogle Scholar
  7. Hess F (1980) Die Entzündungsbestrahlung. Dtsch Ärztebl 17:1119–1121Google Scholar
  8. Jenkinson EL, Norman RC, Wilson IA (1952) Radiation therapy of the nontraumatic painful shoulder. Radiology 58:192–197PubMedGoogle Scholar
  9. Keilholz L, Seegenschmiedt MH, Kutzki D, Sauer R (1995) Radiotherapy of the periarthritis humeroscapularis. Strahlenther Onkol 171:379–384PubMedGoogle Scholar
  10. Keinert K, Schumann E, Grasshof S (1972) Die Strahlentherapie der Periarthritis humero-scapularis. Radiobiol Radiother 13:3–8Google Scholar
  11. Kutzner J, Störkel S, Schilling F, Zapf S (1988) Die Bestrahlung als Therapie bei der sternokostoklaviculären Hyperostose. Med Klin 83:516–519Google Scholar
  12. Lindner H, Freislederer R (1982) Langzeitergebnisse der Bestrahlung von degenerativen Gelenkerkrankungen. Strahlentherapie 158:217–223PubMedGoogle Scholar
  13. Mustakallio S (1939) Über die Röntgenbehandlung der Periarthritis humeroscapularis. Acta Radiol (Stockh) 20:22–32Google Scholar
  14. Plenk HP (1952) Calcifying tendinitis of the shoulder. A critical study of the value of X-ray therapy. Radiology 59:384–389PubMedGoogle Scholar
  15. Reinhold H, Sauerbrey R (1961) Die Röntgentherapie des Schulter-Arm-Syndroms, Epikondylitiden an Schulter und Ellenbogen. Dtsch Med Wschr 86:163–168PubMedGoogle Scholar
  16. Sautter-Bihl ML, Liebermeister E, Scheurig H et al. (1993) Analgetische Bestrahlung degenerativ-entzündlicher Skeletterkrankungen. Dtsch Med Wschr 118:493–498PubMedGoogle Scholar
  17. Seegenschmiedt H, Keilholz L (1998) Epicondylopathia humeri and peritendinitis humeroscapularis: evaluation of radiation therapy long-term results and literature review. Radiother Oncol 47:17–28PubMedGoogle Scholar
  18. Wieland C, Kuttig H (1965) Hochvolttherapie bei Arthrosen und Entzündungen. Strahlentherapie 127:44–48PubMedGoogle Scholar
  19. Zschache H (1972) Ergebnisse der Röntgenschwachbestrahlung. Radiobiol Radiother 13:181–186Google Scholar
  20. Zwicker C, Hering M, Brecht L, Kuhne-Velte HJ, Kern A (1998) Strahlentherapie der Periarthritis humeroscapularis mit ultraharten Photonen. Vergleich mit kernspintomographischen Befunden. Radiologe 38:774–778PubMedGoogle Scholar

Zu Epicondylopathia humeri

  1. Cocchi U (1943) Erfolge und Mi?erfolge bei Röntgenbestrahlung nichtkrebsiger Leiden. Strahlentherapie 73:255–284Google Scholar
  2. Coonrad RW, Hooper WR (1973) Tennis elbow: Its course, natural history, conservative and surgical management. J Bone Joint Surg 55-A:1177–1780Google Scholar
  3. Gärtner C, Schüttauf M, Below M et al. (1988) Zur strahlentherapeutischen Behandlung chronisch-rezidivierender Skelettveränderungen an der Klinik für Onkologie. Radiobiol Radiother 29:687–696Google Scholar
  4. Hess F (1980) Die Entzündungsbestrahlung. Dtsch Ärztebl 17:1119–1121Google Scholar
  5. Kammerer R, Bollmann G, Schwenger P et al. (1990) Ergebnisse der Strahlentherapie der Epicondylitis humeri bei unterschiedlicher Dosierung. Radiobiol Radiother 31:503–507Google Scholar
  6. Keim H (1965) Mitteilung über die Durchführung der Entzündungsbestrahlung mit dem Telekobaltgerät. Strahlentherapie 127:49–52PubMedGoogle Scholar
  7. Mantell BS (1986) The management of benign conditions. In: Hope-Stone HF (ed) Radiotherapy in clinical practice. Butterworths, London, pp 384–399Google Scholar
  8. Sautter-Bihl M-L, Liebermeister E, Scheurig H et al. (1993) Analgetische Bestrahlung degenerativ – entzündlicher Skeletterkrankungen. Dtsch Med Wschr 118:493–498PubMedGoogle Scholar
  9. Seegenschmiedt MH, Keilholz L, Martus P et al. (1997) Epicondylopathia humeri: Indication, technique and clinical results of radiotherapy. Strahlenther Onkol 173:208–218PubMedGoogle Scholar
  10. Seegenschmiedt MH, Keilholz L (1998) Epicondylopathia humeri and peritendinitis humeroscapularis: evaluation of radiation therapy long-term results and literature review. Radiother Oncol 47:17–28PubMedGoogle Scholar
  11. Siebert W, Seichert N, Siebert B et al. (1987) What is the efficacy of soft and mild lasers in therapy of tendinopathies? A double-blind study. Arch Orthop Trauma Surg 106:358–363PubMedGoogle Scholar
  12. von Pannewitz G (1960) Zur Röntgentherapie entzündlicher Krankheiten. Med Welt 10:181–189Google Scholar
  13. von Pannewitz G (1970) Degenerative Erkrankungen In: Handbuch der medizinischen Radiologie Bd. XVII. Springer, Berlin Heidelberg New York Tokio, S 96–98Google Scholar
  14. Wieland C, Kuttig H (1965) Hochvolttherapie bei Arthrosen und Entzündungen. Strahlentherapie 127:44–48PubMedGoogle Scholar
  15. Zschache H (1972) Ergebnisse der Röntgenschwachbestrahlung. Radiobiol Radiother 13:181–186Google Scholar

Zu Kalkaneodynie

  1. Basche S, Drescher W, Mohr K (1980) Ergebnisse der Röntgenstrahlentherapie beim Fersensporn. Radiobiol Radiother 21:233–236Google Scholar
  2. Cocchi U (1943) Erfolge und Mißerfolge bei Röntgenbestrahlung nichtkrebsiger Leiden. Strahlentherapie 73:255–284Google Scholar
  3. Glatzel M, Bäsecke S, Krauß A et al. (2001) Radiotherapy of painful plantar heel spur. BenigNews 2(2):18–19Google Scholar
  4. Heyd R, Strassmann G, Filipowicz I et al. (2001) Radiotherapy in the management of inflammatory calcaneal heel spurs: results of a prospektive study. In: Seegenschmiedt MH, Makoski HB (Hrsg) 11. Kolloquium Radioonkologie/Strahlentherapie. Radiotherapie von gutartigen Erkrankungen. Diplodocus Press, Altenberge, S 173–183Google Scholar
  5. Keim H (1965) Mitteilung über die Durchführung der Entzündungsbestrahlung mit dem Telekobaltgerät. Strahlentherapie 127:49–52PubMedGoogle Scholar
  6. Koeppen D, Bollmann G, Gademann G (2000) Ein Beitrag zur Dosiswirkungsbeziehung bei der Röntgentherapie des Fersensporns (Abstr.) Strahlenther Onkol 176 (Suppl 1):91Google Scholar
  7. Mantell BS (1986) The management of benign conditions. In: Hope-Stone HF (ed) Radiotherapy in clinical practice. Butterworths, London, pp 384–399Google Scholar
  8. Mitrov G, Harbov I (1967) Unsere Erfahrungen mit der Strahlentherapie von nichttumorartigen Erkrankungen. Radiobiol Radiother 8:419–423Google Scholar
  9. Oehler W, Hentschel B (2000) Niedrigdosierte analgetische Radiotherapie von Arthrosen. Ärztebl Thüring 11:92–95Google Scholar
  10. Sautter-Bihl M-L, Liebermeister E, Scheurig H et al. (1993) Analgetische Bestrahlung degenerativ-entzündlicher Skeletterkrankungen. Dtsch Med Wschr 118:493–498PubMedGoogle Scholar
  11. Schäfer U, Micke O, Glashörster M et al. (1995) Strahlentherapeutische Behandlung des schmerzhaften Fersenbeinsporns. Strahlenther Onkol 171:202–206PubMedGoogle Scholar
  12. Schreiber H, Böhnlein G, Ziegler K (2000) Strahlentherapie des schmerzhaften Fersensporns. In: Seegenschmiedt MH, Makoski HB (Hrsg) 10. Kolloquium Radioonkologie/Strahlentherapie. Radiotherapie von gutartigen Erkrankungen. Diplodocus Press, Altenberge, S 186Google Scholar
  13. Seegenschmiedt MH, Keilholz L, Katalinic A et al. (1996) Heel spur: radiation therapy for refractory pain – results with three treatment concepts. Radiology 200:271–276PubMedGoogle Scholar
  14. Seegenschmiedt MH, Keilholz L, Stecken A et al. (1996) Radiotherapy of plantar heel spur: indication, technique and clinical results for different dose concepts. Strahlenther Onkol 172:376–383PubMedGoogle Scholar
  15. Wieland C, Kuttig H (1965) Hochvolttherapie bei Arthrosen und Entzündungen. Strahlentherapie 127:44–48PubMedGoogle Scholar
  16. Zschache H (1972) Ergebnisse der Röntgenschwachbestrahlung. Radiobiol Radiother 13:181–186Google Scholar

Zu Osteoarthrosis deformans

  1. Hess F (1980) Die Entzündungsbestrahlung. Dtsch Ärztebl 17:1119–1121Google Scholar
  2. Hess F (1982) Die Strahlentherapie entzündlicher und degenerativer Erkrankungen. Therapiewoche 32:4798–4804Google Scholar
  3. Hess F (1986) Die Strahlentherapie gutartiger Erkrankungen. Dtsch Ärztebl 83:3374–3376Google Scholar

Zu Desmoid (aggressive Fibromatose

  1. Acker JC, Bossen EH, Halperin EC (1993) The management of desmoid tumors.Int J Radiat Oncol Biol Phys 26:851–858PubMedGoogle Scholar
  2. Assad WA, Nori D, Hilaris BS et al. (1986) Role of brachytherapy in the management of desmoid tumors. Int J Radiat Oncol Biol Phys 12:901–906PubMedGoogle Scholar
  3. Atahan I, Lale F, Akyol F et al. (1989) Radiotherapy in the management of aggressive fibromatosis. Brit J Radiol 62:854–856PubMedGoogle Scholar
  4. Bataini JP, Belloir C, Mazabraud A et al. (1988) Desmoid tumors in adults: the role of radiotherapy in their management. Am J Surg 155:754–760PubMedGoogle Scholar
  5. Ballo MT, Zagars GK, Pollack A (1999) Desmoid tumor: Prognostic factors and outcome after surgery, radiation therapy or combined surgery and radiation therapy. J Clin Oncol 17:158–167PubMedGoogle Scholar
  6. Belliveau P, Graham AM (1984) Mesenteric desmoid tumor in Gardner’s syndrome treated by Sulindac. Dis Colon Rect 10:53–54Google Scholar
  7. Bataini JP, Belloir C, Mazabraud A et al. (1988) Desmoid tumors in adults: The role of radiotherapy in their management. Am J Surg 155:754–760PubMedGoogle Scholar
  8. Enzinger FM, Shiraki M (1967) Musculo-aponeurotoc fibromatosis of the shoulder girdle (extra-abdominal desmoid). Cancer 20:1131–1140PubMedGoogle Scholar
  9. Greenberg HM, Goebel R, Weichselbaum RR et al. (1981) Radiation therapy in the treatment of aggressive fibromatosis. Int J Radiat Oncol Biol Phys 7:305–310PubMedGoogle Scholar
  10. Goy BW, Lee SP, Eilber F et al. (1997) The role of adjuvant radiotherapy in the treatment of resectable desmoid tumors. Int J Radiat Oncol Biol Phys 39:659–665PubMedGoogle Scholar
  11. Hoffmann W, Weidmann B, Schmidberger H et al. (1993) Klinik und Therapie der aggressiven Fibromatose (Desmoide). Strahlenther Onkol 169:235–241PubMedGoogle Scholar
  12. Kamath SS, Parsons JT, Marcus RB (1996) Radiotherapy for local control of aggressive fibromatosis. Int J Radiat Oncol Biol Phys 36:325–328PubMedGoogle Scholar
  13. Karakousis P, Mayordomo J, Zografos GO et al. (1993) Desmoid tumors of the trunk and extremity. Cancer 72:1637–1641PubMedGoogle Scholar
  14. Keus RB, Bartelink H (1986) The role of radiotherapy in the treatment of desmoid tumors. Radiother Oncol 7:1–5PubMedGoogle Scholar
  15. Kiel KD (1984) Radiation therapy in the treatment of aggressive fibromatoses (desmoid tumors). Cancer 54:2051–2055PubMedGoogle Scholar
  16. Kinzbrunner B, Ritter S, Domingo J (1983) Remission of rapidly growing desmoid tumors after tamoxifen. Cancer 52:2201–2204PubMedGoogle Scholar
  17. Kirschner MJ, Sauer R (1993) Die Rolle der Radiotherapie bei der Behandlung von Desmoidtumoren. Strahlenther Onkol 169:77–82PubMedGoogle Scholar
  18. Klein WA, Miller HH, Anderson M (1987) The use of indomethacin, sulindac and tamoxifen for the treatment of desmoid tumors associated with familial polyposis. Cancer 60:2863–2868PubMedGoogle Scholar
  19. Lanari A (1993) Effect of progesterone on desmoid tumors (aggressive fibromatoses). New Engl J Med 309:309–312Google Scholar
  20. Leibel SA, Wara WM, Hill D et al. (1983) Desmoid tumors: Local control and patterns of relapse following radiation therapy. Int J Radiat Oncol Biol Phys 9:1167–1171PubMedGoogle Scholar
  21. Leithner A, Schnack B, Katterschafka T et al. (2000) Treatment of extra-abdominal desmoid tumors with interferon-alpha with or without tretinoin. J Surg Oncol 73:21–25PubMedGoogle Scholar
  22. McCullough WM, Parson JT, van der Griend R et al. (1991) Radiation therapy for aggressive fibro-matosis. J Bone Joint Surg 73A:717–725Google Scholar
  23. Miralbell R, Suit HB, Mankin H et al. (1990) Fibromatoses: from postsurgical surveillance to combined surgery and radiation therapy. Int J Radiat Oncol Biol Phys 18:535–540PubMedGoogle Scholar
  24. Posner MC, Shiu MH, Newsome JL (1989) The desmoid tumor – not a benign disease. Arch Surg 124:191–196PubMedGoogle Scholar
  25. Reitamo JJ, Scheinin TM, Häyvry (1986) The desmoid syndrome. Am J Surg 152:230–237Google Scholar
  26. Sherman NE, Romsdahl M, Evans H et al. (1990) Desmoid tumors: a 20 year radiotherapy experience. Int J Radiat Oncol Biol Phys 19:37–40PubMedGoogle Scholar
  27. Spear MA, Jennings LC, Mankin HJ (1998) Individualizing management of aggressive fibromatoses. Int J Radiat Oncol Biol Phys 40:637–645PubMedGoogle Scholar
  28. Stockdale AD, Cassoni AM, Coe MA et al. (1998) Radiotherapy and conservative therapy in management of musculoaponeurotic fibromatosis. Int J Radiat Oncol Biol Phys 15:851–857Google Scholar
  29. Suit HD (1990) Radiation dose and response of desmoid tumors. Int J Radiat Oncol Biol Phys 9:225–227Google Scholar
  30. Suit HD, Spiro I (1999) Radiation treatment of benign mesenchymal disease. Sem Radiat Oncol 9:171–178Google Scholar
  31. Walther E, Hünig R, Zalad S (1998) Behandlung der aggressiven Fibromatose. Orthopädie 17:193–200Google Scholar
  32. Wadell WR, Gerner RE (1980) Indimethacin and ascorbate inhibit desmoid tumors. J Surg Oncol 15:85–90Google Scholar
  33. Weiss AJ, Lackman RD (1989) Low-dose chemotherapy in desmoid tumors. Cancer 64:1192–1194PubMedGoogle Scholar
  34. Wilcken N, Tattersall MH (1991) Endocrine therapy for desmoid tumors. Cancer 68:1384–1388PubMedGoogle Scholar
  35. Zelefsky MJ, Harrison LB, Shiu MH et al. (1991) Combined surgical resection and iridium-192 implantation for locally advanced and recurrent desmoid tumors. Cancer 67:380–384PubMedGoogle Scholar

Zu Induratio penis plastica

  1. Alth G, Koren H, Gasser G, Eidler R (1985) On the therapy of induratio penis plastica (Peyronie’s disease) by means of radium moulages. Strahlentherapie 161(1):30–34PubMedGoogle Scholar
  2. Bruns F, Kardels B, Schäfer U, Schönekäs K, Willich N (1999) Strahlentherapie bei Induratio penis plastica. Röntgenpraxis 52:33–37PubMedGoogle Scholar
  3. Feder BH (1971) Peyronie’s disease. J Am Geriatr Soc 19:947–951PubMedGoogle Scholar
  4. Hauck EW, Weidner W (2001) Francois de la Peyronie and the disease named after him. Lancet 357:2049–2051PubMedGoogle Scholar
  5. Helvie WW, Ochsner SF (1972) Radiation therapy in Peyronie’s disease. South Med J 65:1192–1196PubMedGoogle Scholar
  6. Incrocci L, Wijnmaalen A, Slob AK et al. (2000) Low-dose radiotherapy in 179 patients with Peyronie’s disease: treatment outcome and current sexual function. Int J Radiat Oncol Biol Phys 47:1353–1356PubMedGoogle Scholar
  7. Kelami A (1983) Classification of congenital and acquired penile deviation. Urol Int 38:229–232PubMedGoogle Scholar
  8. Martin CL (1972) Long time study of patients with Peyronie’s disease treated with irradiation. AJR Am J Roentgenol 114:492–495Google Scholar
  9. Micke O, Seegenschmiedt MH (2002) German Working Group guidelines for radiation therapy of benign diseases: a multicenter approach in Germany. Int J Radiat Oncol Biol Phys 52:496–513PubMedGoogle Scholar
  10. Mira JG, Chahbazian CM, del Regato JA (1989) The value of radiotherapy for Peyronie’s disease: Presentation of 56 new case studies and review of the literature. Int J Radiat Oncol Biol Phys 6:161–166Google Scholar
  11. Nesbit RM (1950) Congenital curvature of the phallus. Report of three cases with description of corrective operation. J Urol 93:230–232Google Scholar
  12. Pambor M, Schmidt W, Wiesner M, Jahr U (1985) Induratio penis plastica – Ergebnisse nach kombinierter Behandlung mit Röntgenbestrahlung und Tokopherol. Z Klin Med 40:1425–1427Google Scholar
  13. Rodrigues CI, Hian Njo, Karim AB (1995) Results of radiotherapy and vitamin E in the treatment of Peyronie’s disease. Int J Radiat Oncol Biol Phys 31:571–574PubMedGoogle Scholar
  14. Schubert GE (1991) Anatomy and pathophysiology of Peyronie’s disease and congenital deviation of the penis. Urol Int 47:231–235PubMedGoogle Scholar
  15. Viljoen IM, Goedhals L, Doman MJ (1993) Peyronie’s disease: A perspective on the disease and the long-term results of radiotherapy. S Afr Med J 83:19–20PubMedGoogle Scholar
  16. Williams JL, Thomas CG (1970) The natural history of Peyronie’s disease. J Urol 103:75–76PubMedGoogle Scholar
  17. Wagenknecht LV, Meyer WH, Kiskemann A (1982) Wertigkeit verschiedener Therapieverfahren bei Induratio penis plastica. Urol Int 37:335–348PubMedGoogle Scholar
  18. Weisser GW, Schmidt B, Hübener KH, Ahlemann LM, Kordonias D (1987) Die Strahlenbehandlung der Induratio penis plastica. Strahlenther Onkol 163:23–28PubMedGoogle Scholar

Zu Dupuytren-Erkrankung und Ledderhose-Syndrom

  1. Adamietz B, Keilholz L, Grünert J, Sauer R (2001) Die Radiotherapie des Morbus Dupuytren im Frühstadium. Langzeitresultate nach einer medianen Nachbeobachtungszeit von 10 Jahren. Strahlenther Onkol 177:604–610PubMedGoogle Scholar
  2. Finney R (1955) Dupuytren’s contracture. Brit J Radiol 28:610–613PubMedGoogle Scholar
  3. Herbst M, Regler G (1985) Dupuytrensche Kontraktur. Radiotherapie der Frühstadien. Strahlentherapie 161:143–147PubMedGoogle Scholar
  4. Hesselkamp J, Schulmeyer M, Wiskemann A (1981) Röntgentherapie der Dupuytrenschen Kontraktur im Stadium I. Therapiewoche 31:6337–6338Google Scholar
  5. Keilholz L, Seegenschmiedt MH, Sauer R (1996) Radiotherapy in early stage Dupuytren’s contracture: Initial and longterm results. Int J Radiat Oncol Biol Phys 36:891–897PubMedGoogle Scholar
  6. Keilholz L, Seegenschmiedt MH, Born AD, Sauer R (1997) Radiotherapy in the early stage of Dupuytren’s disease: The indications, technic and long-term results. Strahlenther Onkol 173:27–35PubMedGoogle Scholar
  7. Köhler AH (1984) Die Strahlentherapie der Dupuytrenschen Kontraktur. Radiobiol Radiother 25:851–853Google Scholar
  8. Lukacs S, Braun Falco O, Goldschmidt H (1978) Radiotherapy of benign dermatoses: indications, practice and results. J Dermatol Surg Oncol 4:620–625PubMedGoogle Scholar
  9. Micke O, Seegenschmiedt MH (2002) The German Working Group guidelines for radiation therapy of benign diseases: a multicenter approach in Germany. Int J Radiat Oncol Biol Phys 52:496–513PubMedGoogle Scholar
  10. Seegenschmiedt MH, Olschewski T, Guntrum F (2001) Radiotherapy optimization in early-stage Dupuytren’s contracture: first results of a randomized clinical study. Int J Radiat Oncol Biol Phys 49:785–798PubMedGoogle Scholar
  11. Vogt HJ, Hochschau L (1980) Behandlung der Dupuytrenschen Kontraktur. Münch Med Wschr 122:125–130Google Scholar
  12. Wasserburger K (1956) Zur Therapie der Dupuytrenschen Kontraktur. Strahlentherapie 100:546–560PubMedGoogle Scholar

Zu Keloide und hypertrophe Nar

  1. Borok TL, Bray M, Sinclair I et al. (1988) Role of ionizing irradiation for 393 keloids. Int J Radiat Oncol Biol Phys 15:865–870PubMedGoogle Scholar
  2. Cosman B, Crikelair GF, Gaulin J et al. (1961) The surgical treatment of keloids. Plast Reconstr Surg 27:335–337Google Scholar
  3. Doornbos JF, Stoffel TJ, Hass AC et al. (1990) The role of kilovoltage irradiation in the treatment of keloids. Int J Radiat Oncol Biol Phys 18:833–839PubMedGoogle Scholar
  4. Emhamre A, Hammar H (1983) Treatment of keloids with postoperative X-ray irradiation. Dermatologica 167:90Google Scholar
  5. Escarmant P, Zimmermann S, Amar A et al. (1993) The treatment of 783 keloid scars by Iridium 192 interstitial irradiation after surgical excision. Int J Radiat Oncol Biol Phys 26:245–251PubMedGoogle Scholar
  6. Guix B, Henriquez I, Andres A et al. (2001) Treatment of keloids by high-dose-rate brachytherapy: a seven-year-study. Int J Radiat Oncol Biol Phys 50:167–172PubMedGoogle Scholar
  7. Inalsingh CHA (1974) An experience in treating five hundred and one patients with keloids. Johns Hopkins Med J 134:284–286PubMedGoogle Scholar
  8. Janssen de Limpens MP (1986) Comparison of the treatment of keloids and hypertrophic scars. Eur J Plast Surg 9:18–21Google Scholar
  9. Kovalic JJ, Perez CA (1989) Radiation therapy following keloidectomy: A 20-year experience. Int J Radiat Oncol Biol Phys 17:77–80PubMedGoogle Scholar
  10. Lo TCM, Seckel BR, Salzman FA, Wright KA (1990) Single-dose electron beam irradiation in treatment and prevention of keloids and hypertrophic scars. Radiother Oncol 19:267–272PubMedGoogle Scholar
  11. Micke O, Seegenschmiedt MH (2002) The German Working Group guidelines for radiation therapy of benign diseases: a multicenter approach in Germany. Int J Radiat Oncol Biol Phys 52:496–513PubMedGoogle Scholar
  12. Ollstein RN, Siegel HW, Gillooley JF et al. (1981) Treatment of keloids by combined surgical excision and immediate postoperative X-ray therapy. Ann Plast Surg 7:281–283PubMedGoogle Scholar
  13. Prott FJ, Micke O, Wagner W, Schäfer U, Haverkamp, Willich N (1997) Narbenkeloidprophylaxe durch Bestrahlung mit Strontium-90. MTA 12:425–428Google Scholar
  14. Roesler HP, Zapf S, Kuffner HD, Wissen-Siegert I, Kutzner J (1993) Strahlentherapie beim Narbenkeloid. Fortschritte der Medizin 111:46–49Google Scholar
  15. Sallstrom KO, Larson O, Heden P et al. (1989) Treatment of keloids with surgical excision and postoperative X-ray radiation. Scand J Plast Reconstr Surg Hand Surg 23:211–214PubMedGoogle Scholar

Zu Sonstige Erkrankungen an Bindegewebe und Haut sowie Hautanhangsgebilden

  1. Alafthan O, Holsti LR (1969) Prevention of Gynecomastia by local roentgen irradiation in estrogen treated prostatic carcinomas. Scand J Urol Nephrol 3:183–186Google Scholar
  2. Amer M, Diab N, Ramadan A et al. (1988) Therapeutic evaluation for intralesional injection of bleomycin sulfate in 143 resistant warts. J Am Acad Dermatol 18:1313–1316PubMedGoogle Scholar
  3. Bunney MH, Nolan MW, Buxton DK et al. (1984) The treatment of resistant warts with intralesional bleomycin: A controlled clinical trial. Br J Dermatol 111:197–199PubMedGoogle Scholar
  4. Chou JL, Easley JD, Feldmeier JJ (1988) Effective radiotherapy in palliating mammalgia associated with Gynecomastia after DES therapy. Int J Radiat Oncol Biol Phys 15:749–751PubMedGoogle Scholar
  5. Coskey RJ (1984) Treatment of plantar warts in children with a salicylic acid-podophyllin-cantharidin product. Pediatr Dermatl 2:71–73Google Scholar
  6. Fröhlich D, Baaske D, Glatzel M (2000) Radiotherapy of hidradenitis suppurativa – still valid today? Strahlenther Onkol 176:286–289PubMedGoogle Scholar
  7. Hassenstein E (1986) Die Strahlenbehandlung gutartiger Erkrankungen – Indikationen, Ergebnisse und Technik. Röntgenblätter 39:21–23PubMedGoogle Scholar
  8. Manusco JE, Abramow SP, Dimichino BR et al. (1991) Carbon dioxide laser management of plantar verruca: A 6-year follow-up survey. J Foot Surg 30:238–240Google Scholar
  9. Metzger H, Junker A, Voss AC (1980) Die Bestrahlung der Brustdrüsen als Prophylaxe der östrogen-induzierten Gynäkomastie beim Prostatakarzinom. Strahlenther Onkol 156:102–104Google Scholar
  10. Seegenschmiedt MH, Katalinic A, Makoski H et al. (2000) Radiation therapy for benign diseases: patterns of care study in Germany. Int J Radiat Oncol Biol Phys 47:195–202PubMedGoogle Scholar
  11. Wolf H, Madson PO, Vermund H (1969) Prevention of estrogeninduced Gynecomastia by external irradiation. J Urol 102:607–609PubMedGoogle Scholar

Zu Heterotope Ossifikationen

  1. Ahrengart L, Lindgren U (1993) Heterotopic bone after hip arthroplasty. Defining the patient at risk. Clin Orthop 293:153–159PubMedGoogle Scholar
  2. Alberti W, Quack G, Krischke W, Lommatzsch A, Huyer C, Krahl H (1995) Verhinderung ektoper Ossifikationen nach Totalendoprothese des Hüftgelenks durch Strahlentherapie. Dtsch Med Wschr 120:983–989PubMedGoogle Scholar
  3. Almasbakk K, Roysiand P (1977) Does indomethacin prevent postoperative ectopic ossification in total hip replacement? Acta Orthop Scand 48:556Google Scholar
  4. Anthony P, Keys H, McCollister-Evarts C, Rubin P, Lush C (1987) Prevention of heterotopic bone formation with early postoperative irradiation in high risk patients undergoing total hip arthroplasty: Comparison of 10 Gy versus 20 Gy schedules. Int Radiat Oncol Biol Phys 13:365–369Google Scholar
  5. Ayers DC, Evarts CM, Parkinson JR (1986) The prevention of heterotopic ossification in high-risk patients by low-dose radiation therapy after total hip arthroplasty. J Bone Joint Surg 68-A:1423–1430Google Scholar
  6. Ayers DC, Pellegrini VD, Evarts CM (1991) Prevention of heterotopic ossification in high-risk patients of radiation therapy. Clin Orthop 263:87–93PubMedGoogle Scholar
  7. Bartels RH, Grotenhuis JA, Van der Spek JA (1991) Symptomatic vertebral hemangiomas. J Neurosurg Sci 35:187–192PubMedGoogle Scholar
  8. Bijvoet OLM, Nollen AJG, Sloof TJJH, Feith R (1974) Effect of diphosphonate on para-articular ossification after total hip replacement. Acta Orthop Scand 45:926–934PubMedGoogle Scholar
  9. Blount LH, Thomas BJ, Tran L, Selch MT, Sylvester JE, Parker RG (1990) Postoperative irradiation for prevention of heterotopic bone: analysis of different dose schedules and shielding considerations. Int J Radiat Oncol Biol Phys 19:577–581PubMedGoogle Scholar
  10. Bosse MJ, Poka A, Reinert CM, Ellwanger F, Slawson R, Mc Devitt ER (1988) Heterotopic bone formation as a complication of acetabular fractures. J Bone Joint Surg 70-A:1231–1237Google Scholar
  11. Bremnes RM, Hauge HN, Sagsveen R (1996) Radiotherapy in the treatment of symptomatic vertebral hemangiomas: Technical case report. Neurosurgery 39:1054–1058PubMedGoogle Scholar
  12. Brooker AF, Bowerman JW, Robinson RA, Riley LH (1973) Ectopic ossification following total hip replacement. J Bone Joint Surg 55-A:1629–1632Google Scholar
  13. Brunner R, Morscher E, Hünig R (1987) Paraarticular ossification in total hip replacement; An indication for irradiation therapy. Arch Orthop Trauma Surg 106:102–107PubMedGoogle Scholar
  14. Caron JC (1976) Para articular ossification in total hip replacement. In: Geschwend N, De Brunner HV (eds) Total Hip Protheses. Bern: 171–185Google Scholar
  15. Cella JP, Salvati EA, Sculco TP (1988) Indomethacin for the prevention of heterotopic ossification following total hip arthroplasty. J Arthroplasty 3:229–234PubMedGoogle Scholar
  16. Clough JR, Price CGH (1973) Aneurysmal bone cyst: Pathogenesis and long term results of treatment. Clin Orthop 97:52–63PubMedGoogle Scholar
  17. Conterato DJ, Verner J, Hartsell WF, Murthy AK, Galante JO, Hendrickson FR (1989) Prevention of heterotopic bone formation, comparison of 5 Gy versus 10 Gy. Int J Radiat Oncol Biol Phys 17 (Suppl 1):232Google Scholar
  18. Coventry MB, Scanlon PW (1981) The use of radiation of discourage ectopic bone. A nine-year study in surgery about the hip. J Bone Joint Surg 63-A:201–208Google Scholar
  19. De Flitch DJ, Stryker JA (1993) Postoperative hip irradiation in prevention of heterotopic ossification: causes of treatment failure. Radiology 188:265–270Google Scholar
  20. De Lee J, Ferrari A, Charnley J (1976) Ectopic bone formation following low friction arthroplasty of the hip. Clin Orthop 121:53Google Scholar
  21. Doppman JL, Oldfield EH, Heiss JD (2000) Symptomatic vertebral hemangiomas: Treatment by means of direct intralesional injection of ethanol. Radiology 214:341–348PubMedGoogle Scholar
  22. Elmstedt E, Lindholm TS, Nilsson OS, Tornkvist H (1985) Effect of ibuprofen on heterotopic ossification after hip replacement. Acta Orthop Scand 56:25–27PubMedGoogle Scholar
  23. Errico TJ, Fetto JF, Waugh TR (1984) Heterotopic ossification: Incidence and relation to trochanteric osteotomy in 100 total hip arthoplasties. Clin Orthop 190:138PubMedGoogle Scholar
  24. Finerman GA, Stover S (1981) Ossification following hip replacement or spinal cord injury: Two clinical studies with EHDP. Met Bone Dis Relat Res 3:337–342Google Scholar
  25. Fox MW, Onofrio BM (1993) The natural history and management of symptomatic and asymptomatic vertebral hemangiomas. J Neurosurg 78:36–45PubMedGoogle Scholar
  26. Garland DE, Betzabe A, Kenneth GV, Vogt JC (1983) Diphosphonate treatment for heterotopic ossification in spinal cord injury patients. Clin Orthop 176:197–200PubMedGoogle Scholar
  27. Garland DE, Orwin JF (1989) Resection of heterotopic ossification in patients with spinal cord injuries. Clin Orthop 242:169–176PubMedGoogle Scholar
  28. Garland DE (1991) A clinical perspective on common forms of acquired heterotopic ossification. Clin Orthop 263:13–29PubMedGoogle Scholar
  29. Garland DE (1985) Resection of heterotopic ossification in the adult with head trauma. J Bone Joint Surg 67:1261–1271PubMedGoogle Scholar
  30. Goel A, Sharp DJ (1991) Heterotopic bone formation after hip replacement. J Bone Joint Surg 73-B:255–257Google Scholar
  31. Goldman AB, DiCarlo EF (1988) Pigmented villonodular synovitis. Diagnosis and differential diagnosis. Radiol Clin North Am 26/6:1327–1347Google Scholar
  32. Granowitz SP, D’Antonio J, Mankin HL (1976) The pathogenesis and long-term end results of pigmented villonodular synovitis. Clin Orthop 114:335–351PubMedGoogle Scholar
  33. Gregoritch S, Chadha M, Pellegrini V, Rubin P, Kantorowicz D (1993) Preoperative irradiation for prevention of heterotopic ossification following prothetic total hip replacement. Preliminary results. Int J Radiat Oncol Phys 27 (Suppl 1):157–158Google Scholar
  34. Harrison MJ, Eisenberg MB, Ullman JS et al. (1995) Symptomatic cavernous malformations affecting the spine and spinal cord. Neurosurgery 37:195–205PubMedGoogle Scholar
  35. Hedley AK, Leon PM, Douglas HH (1989) The prevention of heterotopic bone formation following total hip arthroplasty using 600 rad in a single dose. Arthroplasty 4:319–325Google Scholar
  36. Hierton C, Blomgren G, Lindgren U (1983) Factors associated with heterotopic bone formation in cemented hip protheses. Acta Orthop Scand 54:698–702PubMedGoogle Scholar
  37. Jasty M, Schutzer S, Tepper J, Willett C, Stracher MA, Harris WH (1990) Radiation-blocking shields to localize periarticular radiation precisely for prevention ot heterotopic bone formation around uncemented total hip arthroplasties. Clin Orthop 257:138–145PubMedGoogle Scholar
  38. Jereb B, Smith J (1980) Giant aneurismal bone cyst of the innominate bone treated by irradiation. Br J Radiol 53:489PubMedGoogle Scholar
  39. Kantorowitz DA, Miller GJ, Ferrara JA, Ibbott GS, Fisher R, Ahrens CR (1990) Preoperative versus postoperative irradiation in the prophylaxis of heterotopic bone formation in rats. Int J Radiat Oncol Biol Phys 19:1431–1438PubMedGoogle Scholar
  40. Karstens JH, Gehl H-B, Sawdis E, Casser H-R, Löer F (1990) Strahlentherapie – eine wirksame Prophylaxe periartikulärer Verknöcherungen nach Implantation von Hüfttotalendoprothesen. Med Welt 41:1101–1103Google Scholar
  41. Kennedy WF, Thomas AG, Chessin H, Gasparini G, Thompson W (1991) Radiation therapy to prevent heterotopic ossification after cementless total hip arthoplasty. Clin Orthop 262:185–191PubMedGoogle Scholar
  42. Keret D, Harcke HT, Mendez AA, Bowen JR (1990) Heterotopic ossification in central nervous system-injured patients following closed nailing of femoral fractures. Clin Orthop 256:254–259PubMedGoogle Scholar
  43. Kjaersgaard-Andersen P, Schmidt SA (1986) Indometacin for the prevention of ectopic ossification after hip arthroplasty. Acta Orth Scand 57:12–14Google Scholar
  44. Kleinert H (1967) Über die Telekobalttherapie der Wirbelhämangiome. Strahlenther Onkol 134:504–510Google Scholar
  45. Konski A, Pellegrini V, Poulter C, De Vanny J, Posier R, Evarts CM, Henzler M, Rubin P (1990 a) Randomized trial coaparing single dose versus fractionated Irradiation for prevention of heterotopic bone. Int Radial Oncol Biol Phys 18:1139–1142Google Scholar
  46. Konski A, Weiss C, Rosier R et al. (1990 b) The use of postoperative irradiation for prevention of heterotopic bone after total hip replacement with biological fixation (porous coated) prothesis: an animal model. Int J Radiat Oncol Biol Phys 18:861–865PubMedGoogle Scholar
  47. Laredo JD, Reizine D, Bard M et al. (1986) Vertebral hemangiomas. Radiologic evaluation. Radiology 161:183–189PubMedGoogle Scholar
  48. Lo TC, Healy WL, Covall DJ, Dotter WE, Pfeiffer BA, Torgerson WR, Wasilewski SA (1988) Heterotopic bone formation after hip surgery: prevention with single-dose postoperative hip irradiation. Radiology 168:851–854PubMedGoogle Scholar
  49. Maeda M, Tateishi H, Takaiga et al. (1989) High-energy, lowdose radiation therapy for aneurismal bone cyst. Report of a case. Clin Orthop 243:200PubMedGoogle Scholar
  50. Marcove RC, Sheth DS, Takemoto S et al. (1995) The treatment of aneurismal bone cyst. Clin Orthop 311:157PubMedGoogle Scholar
  51. McLaren AC (1990) Prophylaxis with indomethacin for heterotopic bone. J Bone Joint Surg 72-A:245–247Google Scholar
  52. McLennan I, Keys HM, Evarts CM, Rubin P (1984) Usefulness of postoperative hip irradiation in the prevention of bone formation in a high risk group of patients. Int J Radiat Oncol Biol Phys 10:49–53Google Scholar
  53. McAllister VL, Kendall BE, Bull JWD (1975) Symptomatic vertebral hemangiomas. Brain 98:71–80PubMedGoogle Scholar
  54. Metzenroth H, Publig W, Knahr K, Zandl C, Kuchner G, Carda C (1991) Ossifikationsprophylaxe nach Hüfttotalendoprothesen mit Indomethacin und ihr Einfluss auf die Magenschleimhaut. Z Orthop 129:178–182PubMedGoogle Scholar
  55. Nobler MP, Higinbotham ML, Phillips RF (1968) The cure of aneurismal bone cyst. Irradiation superior to surgery in analysis of 33 cases. Radiology 90:1185PubMedGoogle Scholar
  56. ÓSullivan B, Cummings B, Catton C et al. (1995) Outcome following radiation treatment for high-risk pigmented villonodular synovitis. Int J Radiat Oncol Biol Phys 32:777–786Google Scholar
  57. Orzel JA, Rudd TG (1985) Heterotopic bone formation: Clinical laboratory and imaging correlation. J Nucl Med 26:125PubMedGoogle Scholar
  58. Padovani R, Acciarri N, Giulioni M et al. (1997) Cavernous angiomas of the spinal district: Surgical treatment of 11 patients. Eur Spine J 6:298–303PubMedGoogle Scholar
  59. Pastushyn AI, Slinko EI, Mirzoyeva GM (1998) Vertebral hemangiomas: Diagnosis, management, natural history and clinicopathological correlates in 86 patients. Surg Neurol 50:535–547PubMedGoogle Scholar
  60. Pedersen NW, Kristensen SS, Schmidt SA, Pedersen P, Kjaersgaard-Andersen P (1989) Factors associated with heterotopic bone formation following total hip replacement. Arch Orthop Trauma Surg 108:92–95PubMedGoogle Scholar
  61. Plasmans CMC, Kuypers WM, Slooff TJHH (1978) The effect of ethane-1-hydroxyl-1, 1-diphosphonic acid (EHDP) on matrix induced ectopic bone formation. Clin Orthop 132:233–243PubMedGoogle Scholar
  62. Prakash V, Lin MS, Perkash I (1978) Detection of heterotopic calcification with tc-pyrophosphate in spinal cord injury patients. Clin Nucl Med 3:167–169PubMedGoogle Scholar
  63. Raco A, Ciappetta P, Artico M et al. (1990) Vertebral hemangiomas with cord compression: The role of embolization in five cases. Surg Neurol 34:164–168PubMedGoogle Scholar
  64. Rades D, Bajrovic A, Alberti A, Rudat V (2002) Is there a doseeffect relationship for the treatment of symptomatic vertebral hemangioma? In: Int J Radiat Oncol Biol Phys 55:178–181Google Scholar
  65. Riegler HF, Harris CM (1976) Heterotopic bone formation after total hip arthroplasty. Clin Orthop 117:209PubMedGoogle Scholar
  66. Ritter MA, Sieber JM (1985) Prophylactic indomethacin for the prevention of heterotopic bone formation following total hip arthroplasty. Clin Orthop 196:217–225PubMedGoogle Scholar
  67. Ritter MA, Vaughan RB (1977) Ectopic ossifications after total hip arthroplasty; predisposing factors, frequency and effect on results. J Bone Joint Surg 59 A:345–351Google Scholar
  68. Russell RCG, Fleisch H (1975) Pyrophosphate and diphosphonate in skeletal metabolism. Clin Orthop 108:241–263PubMedGoogle Scholar
  69. Sauer R, Seegenschmiedt MH, Goldmann A, Beck H, Andreas P (1992) Prophylaxe periartikulärer Verknöcherungen nach endoprothetischem Hüftgelenksersatz durch postoperative Bestrahlung. Strahlenth Onkol 168:89–99Google Scholar
  70. Sautter-Bihl ML, Liebermeister E, Heinze HG et al. (1995) The radiotherapy of heterotopic ossifications in para-plegics. The preliminary results. Strahlenther Onkol 171:454–459PubMedGoogle Scholar
  71. Schmidt SA, Kjaersgaard-Andersen P, Pedersen NW, Kristensen SS, Pedersen P, Nielsen JB (1988) The use of Indomethacin to prevent the formation of heterotopic bone after total hip replacement. J Bone Joint Surg 70 A:834–838Google Scholar
  72. Seegenschmiedt MH, Goldmann AR, Wölfel R, Hohmann D, Beck H, Sauer R (1993 a) Prevention of heterotopic ossification (HO) after total hip replacement: randomized high versus low dose radiotherapy. Radioth Oncol 26:271–274Google Scholar
  73. Seegenschmiedt MH, Goldmann AR, Martus P, Wölfel R, Hohmann D, Sauer R (1993 b) Prophylactic radiation therapy for prevention of heterotopic ossification after hip arthroplasty: results in 141 high-risk hips. Radiology 188:257–264PubMedGoogle Scholar
  74. Seegenschmiedt MH, Martus P, Goldmann AR et al. (1994) Peroperative vesus postoperative radiotherapiy for prevention of heterotopic ossification: First results of a randomised trial in high-risk patients. Int J Radiat Oncol Biol Phys 30:63–73PubMedGoogle Scholar
  75. Seegenschmiedt MH, Keilholz L, Martus P, Goldmann A, Wölfel R, Henning F, Sauer R (1997) Prevention of heterotopic ossification about the hip: Final Results of two ran-domised trials in 410 patients using either preoperative or postoperative radiation therapy. Int J Radiat Oncol Biol Phys 39:161–171PubMedGoogle Scholar
  76. Seegenschmiedt MH, Makoski H-Br, Micke O, German Cooperative Group Radiotherapy for Benign Diseases (2001) Benign Diseases: Radiation prophylaxis for heterotopic ossification about the hip joint – a multi-center study. Int J Radiat Oncol Biol Phys 51:756–765Google Scholar
  77. Slawson RG, Poka A, Bathon H, Salazar O, Bromback RJ, Burgess AR (1989) The role of post operative radiation in the prevention of hetrotopic ossification in patients with posttraumatic acetabular fracture. Int J Radiat Oncol Biol Phys 17:669–672PubMedGoogle Scholar
  78. Sodemann B, Persson PE, Nilsson OS (1988) Prevention of heterotopic ossification by non-steroid anti-inflammatory drugs after total hip arthroplasty. Clin Orthop 237:158–237PubMedGoogle Scholar
  79. Sylvester JE, Greenberg P, Selch MT, Thomas BJ, Amstutz H (1988) The use of postoperative irradiation for the prevention of heterotopic bone formation after total hip replacement. Int J Radiat Oncol Biol Phys 14:471–476PubMedGoogle Scholar
  80. Thomas BJ, Amstutz HC (1985) Results of administration of diphosphonate for prevention of heterotopic ossification after total hip arthroplasty. J Bone Joint Surg 67-A:400–403Google Scholar
  81. Tonna EA, Cronkite EF (1961) Autoradiographic studies of cell proliferation in the periosteum of intact and fractured femora of mice utilizing DNA-labeling with H-3 thymidine. Proc Soc Exp Biol Med107:719–721PubMedGoogle Scholar
  82. Unni KK, Ivins JC, Beabout JW et al. (1971) Hemangioma, hemangiopericytoma and hemangioendothelioma (angiosarcoma) of bone. Cancer 27:1403–1414PubMedGoogle Scholar
  83. Van der Werf GJIM, van Hasselt NGM, Tonino AJ (1985) Radiotherapy in the prevention of recurrence of paraarticular ossification in total hip prosthesis. Arch Orthop Trauma Surg 104:85–88PubMedGoogle Scholar
  84. Winkler C, Dornfeld S, Baumann M et al. (1996) Effizienz der Strahlentherapie bei Wirbelhämangiomen. Strahlenther Onkol 172:681–684PubMedGoogle Scholar
  85. Wise MW 3d, Robertson ID, Lachiewicz PF et al. (1990) The effect of radiation therapy on the fixation strength of an experimental porous-coated implant in dogs. Clin Orthop 261:276–280PubMedGoogle Scholar
  86. Wiss DA (1982) Recurrent villonodular synovitis of the knee. Successful treatment with yttrium-90. Clin Orthop Related Res 169:139–144Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. H. Seegenschmiedt
    • 1
  1. 1.Strahlenzentrum HamburgHamburgDeutschland

Personalised recommendations