Skip to main content

Hybrid Code Development for the Numerical Simulation of Instationary Magnetoplasmadynamic Thrusters

  • Conference paper
Book cover High Performance Computing in Science and Engineering '08

Summary

This paper describes the numerical modeling of rarefied plasma flows under conditions where continuum assumptions fail. We numerically solve the Boltzmann equation for rarefied, non-continuum plasma flows, making use of well known approaches as PIC (Particle in Cell) and as DSMC (Direct Simulation Monte Carlo). The mathematical and numerical modeling is explained in some detail and the required computational resources are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Balakrishnan, I.D. Boyd, and D.G. Braun. Monte Carlo simulation of vapor transport in physical vapor deposition of titanium. J. Vac. Sci. Technol. A, 18(3):907–916, May/Jun 2000.

    Article  Google Scholar 

  2. G.A. Bird. Monte-Carlo simulation in an engineering context. Progress in Astronautics and Aeronautics;Rarefied Gas Dynamics, Vol. 74, Part 1, edited by Sam S. Fisher, 1981, pp. 239-255, 1981.

    Google Scholar 

  3. G.A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford, 1994.

    Google Scholar 

  4. C.K. Birdsall and A.B. Langdon. Plasma Physics via Computer Simulation. Adam Hilger, Bristol, Philadelphia, New York, 1991.

    Google Scholar 

  5. I.D. Boyd, M. Keidar, and W. McKeon. Modeling of a pulsed plasma thruster from plasma generation to plume far field. Journal of Propulsion and Power, 37(3):399–407, 2000.

    Google Scholar 

  6. S. Cheng, M. Santi, M. Celik, M. Martinez-Sanchez, and J. Peraire. Hybrid pic-dsmc simulation of a hall thruster plume on unstructured grids. Computer Physics Communications, 164:73–79, 2004.

    Article  Google Scholar 

  7. D. D’Andrea, C.-D. Munz, and R. Schneider. Modeling of electron-electron collisions for particle-in-cell simulations. FZKA 7218 Research Report, Forschungszentrum Karlsruhe – in der Helmholtz-Gemeinschaft, 2006.

    Google Scholar 

  8. D. Diver. A Plasma Formulary for Physics, Technology, and Astrophysics. Wiley-VCH Verlag, Berlin, 2001.

    Google Scholar 

  9. D.J. Economou and T.J. Bartel. Direct Simulation Monte Carlo (DSMC) of Rarefied Gas Flow During Etching of Large Diameter (300-mm) Wafers. IEEE Trans. Pl. Sci., 24, No. 1:131–132, Feb 1996.

    Article  Google Scholar 

  10. C.W. Gardiner. Handbook of Stochastic Methods. Springer Verlag, Berlin, Heidelberg, New York, 1985.

    Google Scholar 

  11. L. Garrigues, A. Heron, J.C. Adam, and J.P. Boeuf. Hybrid and particle-in-cell models of a stationary plasma thrusters. Plasma Sources Sci. Technol., 9:219–226, 2000.

    Article  Google Scholar 

  12. N.A. Gatsonis and X. Yin. Hybrid (particle-fluid) modeling of pulsed plasma thruster plumes. Journal of Propulsion and Power, Vol. 17, No. 5, September-October 2001, 945–958, 2001.

    Article  Google Scholar 

  13. R. Hockney and J. Eastwood. Computer Simulation using Particles. McGraw-Hill, New York, 1981.

    Google Scholar 

  14. G.B. Jacobs and J.S. Hesthaven. High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids. J. Comput. Phys., 214:96–121, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Keidar, I.D. Boyd, E. Antonsen, and G.G. Spanjers. Electromagnetic effects in the near-field plume exhaust of a micro-pulsed-plasma thruster. Journal of Propulsion and Power, 20(6):961–969, November 2004.

    Article  Google Scholar 

  16. P.E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations. Springer-Verlag, Berlin, Heidelberg, New York, 1999.

    Google Scholar 

  17. K. Komurasaki, S. Yokota, S. Yasui, and Y. Arakawa. Particle simulation of plasma dynamics inside an anode-layer hall thruster. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 11-14 July, Fort Lauderdale, Florida, USA, 2004.

    Google Scholar 

  18. J.W. Koo and I.D. Boyd. Computational model of a hall thruster. Computer Physics Communications, 164:442–447, 2007.

    Article  Google Scholar 

  19. M. Laux. Direkte Simulation verdünnter, reagierender Strömungen. PhD thesis, Institut für Raumfahrtsysteme, Universität Stuttgart, Germany, 1996.

    Google Scholar 

  20. M. Mitchner and C. Kruger. Partially Ionized Gases. Wiley, New York, 1973.

    Google Scholar 

  21. C.-D. Munz, P. Omnes, and R. Schneider. A three-dimensional finite-volume solver for the Maxwell equations with divergence cleaning on unstructered meshes. Computer Physics Communications, 130:83–117, 2000.

    Article  MATH  Google Scholar 

  22. C.-D. Munz, R. Schneider, E. Sonnendrücker, E. Stein, U. Voß, and T. Westermann. A finite-volume particle-in-cell method for the numerical treatment of the Maxwell-Lorentz equations on boundary-fitted meshes. Int. J. Numer. Meth. Engng., 44:461–487, 1999.

    Article  MATH  Google Scholar 

  23. K. Nanbu, T. Morimoto, and M. Suetani. Direct simulation monte carlo analysis of flows and etch rate in an inductively coupled plasma reactor. IEEE Trans. Pl. Sc., 27(5):1379–1388, 1999.

    Article  Google Scholar 

  24. A. Nawaz, M. Auweter-Kurtz, G. Herdrich, and H. Kurtz. Investigation and optimization of an instationary MPD thruster at IRS. International Electric Propulsion Conference, Princeton, USA, 2005.

    Google Scholar 

  25. D. Petkow, M. Fertig, G. Herdrich, and M. Auweter-Kurtz. Ionization Model within a 3D PIC-DSMC-FP Code. AIAA-2007-4261, 39th AIAA Thermophysics Conference, Miami, FL, USA, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang E. Nagel Dietmar B. Kröner Michael M. Resch

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fertig, M. et al. (2009). Hybrid Code Development for the Numerical Simulation of Instationary Magnetoplasmadynamic Thrusters. In: Nagel, W.E., Kröner, D.B., Resch, M.M. (eds) High Performance Computing in Science and Engineering '08. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88303-6_40

Download citation

Publish with us

Policies and ethics