Skip to main content

Wing-Tip Vortex / Jet Interaction in the Extended Near Field

  • Conference paper
High Performance Computing in Science and Engineering '08

Summary

The vortex wake behind a half wing is spatially simulated up to the extended near field. Instabilities of the wing tip vortex are analyzed. Results from wind tunnel measurements are used as inflow boundary conditions for an LES of the wake region. An aircraft engine is modeled in the experimental setup, where the jet is driven by pressurized air. The engine was mounted in two different positions under the wing model to investigate the influence of the location of the engine jet on the vortex wake. The numerical simulations of the wake were able to predict trajectories and instabilities of the vortex core. A position of the engine towards the root of the wing created a smaller deflections of the vortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spalart, P.R.: Airplane trailing vortices. Annual Review of Fluid Mechanics 30 (1998) 107–138

    Article  MathSciNet  Google Scholar 

  2. Crow, S.C.: Stability theory for a pair of trailing vortices. AIAA J. 8 (1970) 2172–2179

    Article  Google Scholar 

  3. Waleffe, F.: On the three-dimensional instability of strained vortices. Phys. Fluids 2 (1990) 76–80

    Article  MATH  MathSciNet  Google Scholar 

  4. Labbe, O., Maglaras, E., Garnier, F.: Large-eddy simulation of a turbulent jet and wake vortex interaction. Comput. & Fluids 36 (2007) 772–785

    Article  Google Scholar 

  5. Paoli, R., Laporte, F., Cuenot, B., Poinsot, T.: Dynamics and mixing in jet/vortex interactions. Phys. Fluids 15 (2003) 1843–1860

    Article  MathSciNet  Google Scholar 

  6. Gago, C.F., Brunet, S., Garnier, F.: Numerical Investigation of Turbulent Mixing in a Jet/Wake Vortex Interaction. AIAA J. 40 (2002) 276–284

    Article  Google Scholar 

  7. Holzäpfel, F., Hofbauer, T., Darracq, D., Moet, H., Garnier, F., Gago, C.F.: Analysis of wake vortex decay mechanisms in the atmosphere. Aerosp. Sci. Technol. 7 (2003) 263–275

    Article  MATH  Google Scholar 

  8. Fares, E., Schröder, W.: Analysis of wakes and wake-jet interaction. In: Notes on Numerical Fluid Mechanics. Volume 84. (2003) 57–84

    Google Scholar 

  9. Ghosal, S., Moin, P.: The basic equations for the large eddy simulation of turbulent flows in complex geometry. J. Comput. Phys. 118 (1995) 24–37

    Article  MATH  MathSciNet  Google Scholar 

  10. Meinke, M., Schulz, C., Rister, T.: LES of spatially developing jets. In: Computation and Visualization of Three-Dimensional Vortical and Turbulent Flows. Notes on Numerical Fluid Mechanics. Vieweg Verlag (1997)

    Google Scholar 

  11. Huppertz, G., Klaas, M., Schröder, W.: Engine jet/vortex interaction in the near wake of an airfoil. In: AIAA 36th Fluid Dynamics Conference, San Francisco, CA, U.S. A (2006) AIAA-Paper 2006-3747.

    Google Scholar 

  12. Huppertz, G., Schröder, W.: Vortex/engine jet interaction in the near wake of a swept wing. In: 77th Annual Meeting of the GAMM, Berlin, Germany (2006)

    Google Scholar 

  13. Holzäpfel, F., Gerz, T., Baumann, R.: The turbulent decay of trailing vortex pairs in stably stratified environments. Aerosp. Sci. Technol. 5 (2001) 95–108

    Article  MATH  Google Scholar 

  14. Holzäpfel, F., Hofbauer, T., Darracq, D., Moet, H., Garnier, F., Gago, C.F.: Wake vortex evolution and decay mechanisms in the atmosphere. In: Proceedings of 3rd ONERA–DLR Aerospace Symposium, Paris, France (2001) 10

    Google Scholar 

  15. Zurheide, F., Schröder, W.: Numerical analysis of wing vortices. In: New Results in Numerical and Experimental Fluid Mechanics VI. Volume 96 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design., Springer Berlin, Heidelberg, New York (2008) 17–25

    Chapter  Google Scholar 

  16. Fabre, D., Jacquin, L.: Stability of a four-vortex aircraft wake model. Phys. Fluids 12 (2000) 2438–2443

    Article  MathSciNet  Google Scholar 

  17. Jacquin, L., Fabre, D., Sipp, D., Theofilis, V., Vollmers, H.: Instability and unsteadiness of aircraft wake vortices. Aerosp. Sci. Technol. 7 (2003) 577–593

    Article  Google Scholar 

  18. Le Dizès, S., Laporte, F.: Theoretical predictions for the elliptical instability in a two-vortex flow. J. Fluid Mech. 471 (2002) 169–201

    MATH  MathSciNet  Google Scholar 

  19. Bristol, R.L., Ortega, J.M., Marcus, P.S., Savas, Ö.: On cooperative instabilities of parallel vortex pairs. J. Fluid Mech. 517 (2004) 331–358

    Article  MATH  MathSciNet  Google Scholar 

  20. Stumpf, E., Wild, J., Dafa’Alla, A.A., Meese, E.A.: Numerical simulations of the wake vortex near field of high-lift configurations. In: European Congress on Computational Methods in Applied Sciences an Engineering ECCOMAS 2004, Jyväskylä (2004)

    Google Scholar 

  21. Yin, X.Y., Sun, D.J., Wei, M.J., Wu, J.Z.: Absolute and convective instability character of slender viscous vortices. Phys. Fluids 12 (2000) 1062–1072

    Article  MATH  MathSciNet  Google Scholar 

  22. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285 (1995) 69–94

    Article  MATH  MathSciNet  Google Scholar 

  23. Schlichting, H., Truckenbrodt, E.A.: Aerodynamik des Flugzeuges. Volume 2. Springer, Berlin, Heidelberg, New York, Barcelona, Hongkong, London, Mailand, Paris, Singapur, Tokio (2001)

    Google Scholar 

  24. Laporte, F., Corjon, A.: Direct numerical simulations of the elliptic instability of a vortex pair. Phys. Fluids 12 (2000) 1016–1031

    Article  MATH  MathSciNet  Google Scholar 

  25. Leweke, T., Williamson, C.H.K.: Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 360 (1998) 85–119

    Article  MATH  MathSciNet  Google Scholar 

  26. Gerz, T., Holzäpfel, F.: Wing-tip vortices, turbulence, and the distribution of emissions. AIAA J. 37 (1999) 1270–1276

    Article  Google Scholar 

  27. Saudreau, M., Moet, H.: Characterization of Extended Near-Field and Crow Instability in the Far-Field of a Realistic Aircraft Wake. In: European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004. (2004)

    Google Scholar 

  28. Özger, E., Schell, I., Jacob, D.: On the Structure and Attenuation of an Aircraft Wake. J. Aircraft 38 (2001) 878–887

    Article  Google Scholar 

  29. Beninati, M.L., Marshall, J.S.: An experimental study of the effect of free-stream turbulence on a trailing vortex. Experiments in Fluids 38 (2005) 244–257

    Article  Google Scholar 

  30. Jacquin, L., Pantano, C.: On the persistence of trailing vortices. J. Fluid Mech. 471 (2002) 159–168

    Article  MATH  MathSciNet  Google Scholar 

  31. Gallaire, F., Chomaz, J.M.: Mode selection in swirling jet experiments: a linear stability analysis. J. Fluid Mech. 494 (2003) 223–253

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang E. Nagel Dietmar B. Kröner Michael M. Resch

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zurheide, F.T., Meinke, M., Schröder, W. (2009). Wing-Tip Vortex / Jet Interaction in the Extended Near Field. In: Nagel, W.E., Kröner, D.B., Resch, M.M. (eds) High Performance Computing in Science and Engineering '08. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88303-6_20

Download citation

Publish with us

Policies and ethics