Skip to main content

Water Resources

  • Chapter
  • First Online:
Book cover Environmental Monitoring using GNSS

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

  • 2132 Accesses

Abstract

Essential for life, fresh water is one of the basic necessities without which human beings cannot live! Some of its uses include

With a growing population and a drying climate, Australia—like many rich nations—is running out of water. Solutions are not easy nor cheap... and may require cities to tap their sewers Phillips (2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Economist, September 12th 2009, pp. 27–29: briefing India’s water crisis.

  2. 2.

    http://disc.sci.gsfc.nasa.gov/services/grads-gds/gldas

  3. 3.

    http://trmm.gsfc.nasa.gov/data_dir/data.html

  4. 4.

    Source: http://www.nation.co.ke

References

  • Abiya IO (1996) Towards sustainable utilization of lake Naivasha, Kenya. Lakes Res Res Manag 2 (3–4):231–242

    Google Scholar 

  • Andersen OB, Seneviratne SI, Hinderer J, Viterbo P (2005) GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave. Geophys Res Lett 32((L18405):2–5

    Google Scholar 

  • Awange JL, Ong’ang’a O (2006) Lake Victoria-ecology, resourcof the lake basines and environment. Springer, Berlin

    Google Scholar 

  • Awange JL, Sharifi M, Ogonda G, Wickert J, Grafarend EW, Omulo M (2008a) The falling lake victoria water level GRACE TRIMM and CHAMP satellite analysis

    Google Scholar 

  • Awange JL, Ogallo L, Kwang-Ho B, Were P, Omondi P, Omute P, Omulo M (2008b) Falling Lake Victoria water levels: is climate a contribution factor?. J Clim Chang 89:287–297

    Google Scholar 

  • Awange JL, Sharifi MA, Baur O, Keller W, Featherstone WE, Kuhn M (2009) GRACE hydrological monitoring of Australia. Current limitations and future prospects. J Spatial Sci 54((1):23–36

    Google Scholar 

  • Awange JL, Fleming KM, Kuhn M, Featherstone WE, Heck B, Anjasmara I (2011) On the suitability of the 4 \(\times\) 4\(^\circ\) GRACE mascon solutions for remote sensing Australian hydrology

    Google Scholar 

  • Awange JL, Forootan E, Kiema JBK, Fleming KM, Ohanya S, Heck B (2012) Understanding the decline of Lake Naivasha using satellite-based methods. Environ Monit Assess (submitted)

    Google Scholar 

  • Becht R (2007) Environmental effects of the floricultural industry on the Lake Naivasha Basin. ITC, The Netherlands

    Google Scholar 

  • Becht R, Haper DM (2002) Towards an understanding of human impact upon the hydrology of Lake Naivasha, Kenya. Hydrobiologia 488(1–3):1–11

    Google Scholar 

  • Becht R, Odada EO, Higgins S Lake (2005) Naivasha: experience and lessons learned brief. In: (eds) In: Lake basin management initiative: Experience and lessons learned briefs. including the final report: Managing lakes and basins for sustainable use, a report for lake basin managers and stakeholders. Kusatsu: International Lake Environment Committe Foundation (ILEC) 2005 pp. 277–298

    Google Scholar 

  • Becker M, Llowel W, Cazenave A, Güntner A., Crétaux J-F. (2010) Recent hydrological behaviour of the East African Great Lakes region inferred from GRACE, satellite altimetry and rainfall observations. C R Geosci

    Google Scholar 

  • Bettadpur S (2007) UTCSR level-2 processing standards document for level-2 product release 0004. Gravity Recovery and Climate Experiment (GRACE) Rev 3.1, GRACE 327-742 (CSR-GR-03-03) Center for Space Research

    Google Scholar 

  • Beyene T, Lettenmaier DP, Kabat P (2010) Hydrologic impacts of climate change on the Nile River Basin: implications of the 2007 IPCC scenarios. Clim Change 100:433–461

    Article  Google Scholar 

  • Bonsor HC, Mansour MM, MacDonald AM, Hughes AG, Hipkin RG, Bedada T (2010) Interpretation of GRACE data of the Nile Basin using a groundwater recharge model. Hydrol Earth Sys Sci Discuss 7:4501–4533

    Article  Google Scholar 

  • Bower DR, Courtier N (1998) Precipitation effects on gravity measurements at the Canadian Absolute Gravity Site. Phys Earth Planet Interiors 106:353–369

    Article  Google Scholar 

  • Brutsaert W (2005) Hydrology: An introduction. 4th edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Carolina BF (2002) Competition over water resources: analysis and mapping of water-related conflicts in the catchment of Lake Naivasha (Kenya) MSc Thesis, ITC, Kenya

    Google Scholar 

  • Casanova MT (1994) Vegetative and reproductive responses of charophytes to waterlevel uctuations in permanent and temporary wetlands in Australia

    Google Scholar 

  • Conway D (2005) From headwater tributaries to international river: observing and adapting to climate variability and change in the Nile Basin. Glob Env Change 15:99–114

    Article  Google Scholar 

  • Crowley JW, Mitrovica JX, Bailey RC, Tamisiea ME, Davis JL (2006) Land water storage within the Congo Basin inferred from GRACE satellite gravity data. Geophys Res Lett 33:L19402

    Article  Google Scholar 

  • Damiata BN, Lee TC (2002) Gravitational attraction of solids of revolution - part 1: vertical circular cylinder with radial variation of density. J Appl Geophys 50(3):333–349. doi:10.1016/S0926-9851(02)00151-9

    Article  Google Scholar 

  • Darling W, Allen D, Armannsson H (1990) Indirect detection of subsurface out ow from a rift valley lake, J Hydrol 113(1–4):297–306

    Google Scholar 

  • Ellett KM, Walker JP, Rodell M, Chen JL, Western AW (2005) GRACE gravity fields as a new measure for assessing large-scale hydrological models. In: MODSIM 2005 International Congress on Modelling and Simulation. Zerger A, Argent RM (eds) Modell Simul Soc Aust NZ, December 2005, pp. 2911–2917, ISBN: 0-9758400-2-9

    Google Scholar 

  • Ellett KM, Walker JP, Western AW, Rodell M (2006) A framework for assessing the potential of remote sensed gravity to provide new insight on the hydrology of the Murray-Darling Basin. Aust J Water Resour 10(2):89–101

    Google Scholar 

  • Everard M, Harper DM (2002) Towards the sustainability of the Lake Naivasha Ramsar site and its catchment. Hydrobiologia 488(1–3):191–203

    Article  Google Scholar 

  • Everard M, Vale JA, Harper DM, Tarras-Wahlberg H (2002) The physical attributes of the Lake Naivasha catchment rivers. Hydrobiologia 488(1–3):13–25

    Article  Google Scholar 

  • Forootan E, Kusche J (2011) Separation of climate-driven signals in timevariable gravity using independent component analysis (ICA) J Geodesy, Submitted

    Google Scholar 

  • Garcia-Garcia D, Ummenhofer CC, Zlotnicki V (2011) Australian water mass variations from GRACE data linked to Indo-Pacific climate variability. Remote Sens Env 115:2175–2183

    Article  Google Scholar 

  • Goodkind JM (1986) Continuous measurement of nontidal variations of gravity. J Geophys Res 91(B9):9125–9134

    Article  Google Scholar 

  • Hamouda MA., Nour El-Din MN, Moursy FI (2009) Vulnerability assessment of water resources systems in the eastern Nile basin. Water Resour Manag 23:2697–2725

    Google Scholar 

  • Harper DM, Mavuti KM, Muchiri SM (1990) Ecology and management of Lake Naivasha, Kenya, in relation to climatic change, alien species’ introductions, and agricultural development. Env Conserv 17(04):328–336

    Article  Google Scholar 

  • Hofman AR (2004) The connection: water and energy security. http://www.iags.org/ n0813043.htm [Accessed on 25 Aug 2010]

  • ILEC (International Lake Environment Committee) (2005) Managing lakes and their basins for sustainable use. A report for the lake basin managers and stakeholders. Int Lakes Env Comm Found, Kusatsu, Japan

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Contribution of working group I to the fourth assessment report

    Google Scholar 

  • IRIN Humanitarian News and Analysis, UN Office for Coordination of Humanitarian Affairs (2006) Global: the global water crisis: managing a dwindling resource. October, 2006. http://www.irinews.org

  • Kayombo S, Jorgensen SE (2006) Lake Victoria: experience and lessons learned brief. Int Lake Env Comm, Lake Basin Management Initiative

    Google Scholar 

  • KFC (Kenya Flower Council) (2011) Kenya flower council. http://www.kenyaowercouncil.org. Accessed [25 July 2010]

  • Kull D (2006) Connections between recent water level drops in Lake Victoria, dam operations and drought. ,

    Google Scholar 

  • Lambert A, Beaumont C (1977) Nano variation in gravity due to seasonal groundwater movements implications for the gravitational detection of tectonic movements. J Geophys Res 82(2):297–306

    Article  Google Scholar 

  • Leblanc M, Tregoning P, Ramillien G, Tweed S, Fakes A (2009) Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia. Water Resour Res 45:W04408

    Article  Google Scholar 

  • Leick A (2004) GPS satellite surveying. 3rd edn. Wiley, New York

    Google Scholar 

  • Leirião S, He X, Christiansen L, Andersen OB, Bauer-Gottwein P (2009) Calculation of the temporal gravity variation from spatially variable water storage change in soils and aquifers. J Hydrol 365:302–309

    Google Scholar 

  • Mekonnen MM, Hoekstra AY (2010) Mitigating the water footprint of export cut owers from the Lake Naivasha Basin, Kenya. Value of water research report series No. 45, UNESCO-IHE

    Google Scholar 

  • Montgomery EL (1971) Determination of coefficient of storage by use of gravity measurements. Ph.D. Thesis, University of Arizona, Tucson

    Google Scholar 

  • Mukai A, Higashi T, Takemoto S, Nakagawa I, Naito I (1995) Accurate estimation of atmospheric effects on gravity observations made with a superconducting gravity meter at Kyoto. Phys Earth Planet Interiors 91(1-3):149–159

    Article  Google Scholar 

  • Neumeyer J, Barthelmes F, Dierks O, Flechtner F, Harnisch M, Harnisch G, Hinderer J, Imanishi Y, Kroner C, Meurers B, Petrovic S, Reigber C, Schmidt R, Schwintzer P, Sun H, Virtanen H (2006) Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings GRACE satellite observations and global hydrology models. J Geodesy 79((10-11):573–585

    Article  Google Scholar 

  • Nicholson SE (1999) Historical and modern uctuations of lakes Tanganyika and Rukwa and their relationship to rainfall variability. Clim Chang 41:53–71

    Article  Google Scholar 

  • Nicholson SE (1998) Historical uctuations of Lake Victoria and other lakes in the Northern Rift Valley of East Africa. In: Lehman JT (ed) Environmental change and response in East African lakes. Kluwer, Dordrecht, pp 7–35

    Google Scholar 

  • NLWRA (National Land and Water Resource Audit) (2001) Water resources in Australia. A summary of the national land and water resource audit’s Australian water resources assessment 2000. Surface water and groundwater—availability and quality

    Google Scholar 

  • Owor M, Taylor RG, Tindimugaya C, Mwesigwa D (2009) Rainfall intensity and groundwater recharge: empirical evidence from the Upper Nile Basin. Env Res Lett 4:035009

    Google Scholar 

  • Phillips S (2006) Water Crisis. COSMOS, issue 9, June. http://www.cosmosmagazine. com/issues/2006/9/

  • Pool DR, Eychaner JH (1995) Measurements of aquifer–storage change and specific yield using gravity surveys, groundwater 33(3):425–432. doi:10.1111/j.1745-6584.1995.tb00299.x

  • Ramillien G, Cazenave A, Brunau O (2004) Global time variations of hydrological signals from GRACE satellite gravimetry. Geophys J Int 158(3):813–826

    Article  Google Scholar 

  • Ramillien G, Frappart F, Cazenave A, Gntner A (2005) Time variations of land water storage from an inversion of two years of GRACE geoids [rapid communication]. Earth Planet Sci Lett 235(1-2):283–301

    Article  CAS  Google Scholar 

  • Richardson JL, Richardson AE (1972) History of an African rift lake and its climatic implications. Ecol Monogr 42(4):499–534

    Article  Google Scholar 

  • Rieser D Kuhn M, Paill R, Anjasmara IM, Awange J (2010) Relation between GRACE-derived surface mass variations and precipitation over Australia. Aust J Eath sci 57(7):887–900. doi:10.1080/08120099.2010.512645

    Google Scholar 

  • Rodell M, Famiglietti JS (1999) Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Res Res 35(9):2705–2724. doi:10.1029/1999WR900141

    Article  Google Scholar 

  • Rodell M, Famiglietti JS, Chen J, Seneviratne SI, Viterbo P, Holl S, Wilson CR (2004) Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys Res Lett 31:L20504. doi:10.1029/2004GL020873

    Article  Google Scholar 

  • Rodell M, Chen J, Kato H, Famiglietti JS, Nigro J, Wilson CR (2006) Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol J 15(1): 159–166

    Article  Google Scholar 

  • Sahin M (1985) Hydrology of the Nile Basin. Developments in water Science No. 21. Elsevier, New York 575 p

    Google Scholar 

  • Sansome HW (1952) The trend of rainfall in East Africa. E Afr Meteorol Dep, Tech Mem. 1. 14 p.

    Google Scholar 

  • Schmidt R, Schwintzer P, Flechtner F, Reigber C, Güntner A, Döll P, Ramillien G, Cazenave A, Petrovic S, Jochmann H, Wünsch J (2006) GRACE observations of changes in continental water storage. Glob Planet Change 50(1–2):112–126

    Article  Google Scholar 

  • Senay G B, Asante K, Artan G (2009) Water balance dynamics in the Nile Basin. Hydrol Process 23:3675–3681

    Google Scholar 

  • Smith A B, Walker JP, Western AW, Ellett KM (2005) Using ground based measurements to monitor changes in teresstrial water storage. 29th Hydrology and water resources symposium (CD Rom), Institute of Engineers Australia.

    Google Scholar 

  • Steffen W, Sanderson A, Tyson PD, Jäger J, Matson PA, Moore BII I, Oldfield F, Richardson K, Schellnhuber HJ, Turner BLI I, Wasson RJ (2005) Global change and the earth system: a planet under pressure. Springer, Berlin

    Google Scholar 

  • Swenson S, Wahr J (2009) Monitoring the water balance of Lake Victoria, East Africa, from space. J Hydrol 370:163–176

    Article  Google Scholar 

  • Swenson S, Wahr J, Milly PCD (2003) Estimated accuracies of regional water storage variations inferred from the gravity recovery and climate experiment (GRACE). Water Resour Res 39(8):1223

    Article  Google Scholar 

  • Swenson S, Yeh PJ- F, Wahr J, Famiglietti J (2006) A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois. Geophys Res Lett 33:L16401

    Article  Google Scholar 

  • Syed T, Famiglietti J, Rodell M, Chen J, Wilson C (2008) Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land-atmosphere water balance. Water Res Res 44:W02433

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Ries J C, Thompson P F, Watkins M M (2004) GRACE measurements of mass variability in the earth system. Science 305:503–505. doi:10.1126/science.1099192

    Article  Google Scholar 

  • Taylor CJ, Alley WM (2001) Ground-water-level monitoring and the importance of long-term water-level data. US Geological Survey Circular 1217, Denver, Colorado

    Google Scholar 

  • Ummenhofer C, England M, McIntosh P, Meyers G, Pook M, Risbey J, Gupta A, Taschetto A (2009) What causes southeast Australias worst droughts?. Geophys Res Lett 36:L04706

    Article  Google Scholar 

  • UN ENVTL PROGRAMME (2002) A world of salt: total global saltwater and freshwater estimates

    Google Scholar 

  • Vincent CE, Davies TD, Beresford UC (1979) Recent changes in the level of Lake Naivasha, Kenya, as an indicator of equatorial westerlies over East Africa. Clim Chang 2(2):175–189

    Article  Google Scholar 

  • Whittington D, McClelland E (1992) Opportunities for regional and international cooperation in the Nile basin. Water Int 17(3):144–154

    Article  Google Scholar 

  • Winsemius HC, Savenije HHG, van de Giesen NC, van den Hurk B, Zapreeva EA, Klees R (2006) Assessment of gravity recovery and climate experiment (GRACE) temporal signature over the upper Zambezi

    Google Scholar 

  • World Bank (2003) Water resource and environment (eds) Davis R and Hirji R. Technical Note G.2, Lake Management

    Google Scholar 

  • Yan JP, Hinderer M, Einsele G (2002) Geochemical evolution of closed-basin lakes: general model and application to Lakes Qinghai and Turkana. Sediment Geol 148(1–2):105–122

    Article  CAS  Google Scholar 

  • Yates DN, Strzepek KM (1998) Modelling the Nile Basin under climate change. J Hydrol Eng 3:98

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Awange, J.L. (2012). Water Resources. In: Environmental Monitoring using GNSS. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88256-5_11

Download citation

Publish with us

Policies and ethics