Allard V, Newton PCD, Lieffering M, Soussana J-F, Grieu P, Matthew C (2004) Elevated CO2 effects on decomposition processes in a grazed grassland. Global Change Biol 10:1553–1564
CrossRef
Google Scholar
Amthor JS (1998) Serching for a relationship between forest water use and increasing atmospheric CO2 concentration with long-term hydrologic data from the Hubbard Brook Experimental Forest. Environ Sci Div Publ 4833, Oak Ridge Nat Lab, Oak Ridge, TN
Google Scholar
Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163
CrossRef
CAS
Google Scholar
Betts RA (2001) Biogeophysical impacts of land use on present-day climate: near-surface temperature change and radiative forcing. Atmos Sci Lett doi:1006/asle.2001.0023
Google Scholar
Betts RA (2005) Integrated approaches to climate-crop modelling: needs and challenges. Phil Trans R Soc London A 360:2049–2065
CrossRef
CAS
Google Scholar
Betts RA (2007) Implications of land ecosystem–atmosphere interactions for strategies for climate change adaptation and mitigation. Tellus B 59:602–615
CrossRef
Google Scholar
Betts RA, Boucher O, Collins M, Cox PM, Falloon P, Gedney N, Hemming DL, Huntingford C, Jones CD, Sexton D, Webb M (2007a) Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448:1037–1041, doi:10.1038/nature06045
Google Scholar
Betts RA, Cox PM, Collins M, Harris PP, Huntingford C, Jones CD (2004) The role of ecosystem– atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor Appl Climatol 78:157–175
CrossRef
Google Scholar
Betts R, Falloon P, Challinor A, Hemming D (2006) Assessing uncertainties in key climate change impacts indicators. Defra Milestone 04/07 13.06.05, Physical, chemical, biological effects of climate change, June 05 2006. Report to Defra, Met Of ce Hadley Centre, Exeter, UK
Google Scholar
Betts R, Falloon P, Klein Goldewijk K, Ramankutty N (2007b) Biogeophysical effects of land use on climate: model simulations of radiative forcing and large-scale temperature change. Agric For Meteorol 142:216–233
Google Scholar
Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk GJD (2005) Carbon losses from all soils across England and Wales 1978–2003. Nature 437:245–248
CrossRef
CAS
Google Scholar
Bondeau A, Smith PC, Zaehle S, et al. (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biol 13:679–706
CrossRef
Google Scholar
Booker FL, Fiscus EL (2005) The role of ozone ux and antioxidants in the suppression of ozone injury by elevated CO2 in soybean. J Exp Botany 56:2139–2151
CrossRef
CAS
Google Scholar
Boucher O, Myhre G, Myhre A (2004) Direct in uence of irrigation on atmospheric water vapour and climate. Clim Dyn 22:597–603
CrossRef
Google Scholar
Bradley RI, Moffat AJ Falloon P (2005) Climate change and soil function. Research Report to Defra SP0538. Cran el d University, Cran el d, UK
Google Scholar
Buyanovsky GA, Wagner GH (1998) Changing role of cultivated land in the global carbon cycle. Biol Fertil Soils 27:242–245
CrossRef
CAS
Google Scholar
Cannell MGR (2003) Carbon sequestration and biomass energy offset: theoretical, potential and achievable capacities globally, in Europe and the UK. Biomass Bioenergy 24:97–116
CrossRef
Google Scholar
CEC (2004) Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection. 6 Vol EUR 21319 EN. European Commission, Luxembourg
Google Scholar
Challinor AJ, Wheeler TR, Slingo JM, Hemming D (2005) Quanti cation of physical and biological uncertainty in the simulation of the yield of a tropical crop using present day and doubled CO2 climates. Phil Trans R Soc B 360:2085–2094, doi:10.1098/rstb.2005.1740
CrossRef
CAS
Google Scholar
Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Buchmann N, Aubinet M, Bernhofer C, Carrara A, Chevallier F, Denoblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Pilegaard K, Rambal S, Seufert G, Soussana J, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Unprecedented reduction in European primary productivity caused by heat and drought in 2003. Nature 437:529–533
CrossRef
CAS
Google Scholar
Cowling SA, Betts RA, Cox PM, Ettwein VJ, Jones CD, Maslin MA, Spall SA (2004) Contrasting simulated past and future responses of the Amazonian forest to atmospheric change. Phil Trans R Soc 359:539–547
CrossRef
CAS
Google Scholar
Cox PM, Betts RA, Collins M, Harris PP, Huntingford C, Jones CD (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st Century. Theor Appl Climatol 78:137–156
CrossRef
Google Scholar
Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187
CrossRef
CAS
Google Scholar
Davidson E, Janssens I (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173
CrossRef
CAS
Google Scholar
Department for Food Environment and Rural Affairs (Defra) (2003) The First Soil Action Plan for England: 2004–2006. Defra, London, UK
Google Scholar
Desjardins RL, Sivakumar MVK, de Kimpe C (2007) The contribution of agriculture to the state of climate: workshop summary and recommendations. Agric For Meteorol 142:314–324
CrossRef
Google Scholar
Easterling WE, Aggarwal PK, Batima P, Brander KM, Erda L, Howden SM, Kirilenko A, Morton J, Soussana J-F, Schmidhuber J, Tubiello FN (2007) Food, fibre and forest products. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp273–313
Google Scholar
Falloon P (2001) Large scale spatial modelling of soil organic matter dynamics. Ph.D. Thesis, School of Life and Environmental Sciences, University of Nottingham, UK
Google Scholar
Falloon P (2004) Using RothC with climate and land use change at the 1 km scale. Section 7 In: Milne R (ed) Carbon Sequestration in Vegetation and Soils. Annual Report for DEFRA Contract GA01054 May 2004, CEH Edinburgh, UK
Google Scholar
Falloon P, Betts R (2006) The impact of land use change on climate in HadGEM1 simulations. Defra Milestone 04/07 13.01.06. Physical, Chemical, Biological Effects of Climate Change, September 2006. 29/09/06. Report to Defra. Met Office Hadley Centre, Exeter, UK
Google Scholar
Falloon P, Jones CD, Cerri CE, Al-Adamat R, Kamoni P, Batacharya T, Easter M, Paustian K, Killian K, Coleman K, Milne E (2007a) Climate change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil. Agric Ecosys Environ 122:114–124
Google Scholar
Falloon P, Jones CD, Hemming DL (2006b) Uncertainty in global soil carbon feedbacks. Defra Milestone Report 08/03 08.03.06. The Global Carbon Cycle and Ecosystems, November 2006. Met Office Hadley Centre, Exeter UK
Google Scholar
Falloon PD, Smith P (2003a) Modelling soil carbon fluxes and land use change for the National Carbon Dioxide Inventory. Final Research Report to Defra Contract CC0242. Rothamsted Research, Harpenden, UK
Google Scholar
Falloon P, Smith P (2003b) Accounting for changes in soil carbon under Kyoto: long-term data-sets need to be improved to reduce uncertainty associated with model projections. Soil Use Manag 19:265–269
Google Scholar
Falloon P, Smith P, Bradley RI, Milne R, Tomlinson R, Viner D, Livermore M, Brown T (2006a) RothCUK– a dynamic modelling system for estimating changes in soil C from mineral soils at 1-km resolution in the UK. Soil Use Manag 22:274–288, doi: 10.1111/j.1475-2743.2006.00028.x
Google Scholar
Falloon PD, Smith P, Smith JU, Szabo J, Coleman K, Marshall S (1998) Regional estimates of carbon sequestration potential: linking the Rothamsted carbon turnover model to GIS databases. Biol Fertil Soils 27:236–241
CrossRef
CAS
Google Scholar
Fang C, Smith P, Moncrieff J, Smith JU (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433:57–59
CrossRef
CAS
Google Scholar
Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE, Meehl GA, Washington WM (2001) The importance of land cover change in simulating future climates. Science 310:1674–1678
CrossRef
Google Scholar
Felzer B, Reilly J, Melillo J, Kicklighter D, Wang C, Prinn R, Saro m M, Zhuang Q (2005) Past and future effects of ozone on net primary production and carbon sequestration using a global biogeochemical model. Clim Change 73:345–373. doi:10.1007/S10584-005-6776-4
CrossRef
CAS
Google Scholar
Fischlin A, Midgley GF, Price JT, Leemans R, Gopal R, Turley C, Rounsevell MDA, Dube OP, Tarazona J, Velichko AA (2007) Ecosystems, their properties, goods, and services. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp211–272
Google Scholar
Freibauer A, Rounsevell M, Smith P, Verhagen A (2004) Carbon sequestration in European agricultural soils. Geoderma 122:1–23
CrossRef
CAS
Google Scholar
Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Doney S, Eby M, Fung I, Govindasamy B, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Thompson S, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis, results from the C4MIP model inter-comparison. J Clim 19:3337–3353
CrossRef
Google Scholar
Friedlingstein P, Dufresne JL, Cox PM, Rayner P (2003) How positive is the feedback between climate change and the carbon cycle? Tellus B 55B:692–700
CAS
Google Scholar
Giardina C, Ryan M (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861
CrossRef
CAS
Google Scholar
Gill RA, Polley HW, Johnson HB, Anderson LJ, Maherali H, Jackson RB (2002) Nonlinear grassland responses to past and future atmospheric CO2. Nature 417:279–282
CrossRef
CAS
Google Scholar
Gullison RE, Frumhoff PC, Canadell JG, Field CB, Nepstad DC, Hayhoe K, Avissar R, Curran LM, Friedlingstein P, Jones CD, Nobre C (2007) Tropical forests and climate policy. Science 316:985–986, doi: 10.1126/science.1136163
CrossRef
CAS
Google Scholar
Guo J, Zhou C (2007) Greenhouse gas emissions and mitigation measures in Chinese agroecosystems. Agric For Meteorol 142:270–277
CrossRef
Google Scholar
Harrison RG, Jones CD, Hughes JK (2008) Competing roles of rising CO2 and climate change in the contemporary European carbon balance. Biogeosciences 5:1–10
CrossRef
CAS
Google Scholar
Henry HAL, Cleland EE, Field CB, Vitousek PM (2005) Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland. Oecologia 142:465–473
CrossRef
Google Scholar
Houghton RA, Hackler JL, Lawrence KT (1999) The US carbon budget: contributions form land-use change. Science 285:574–578
CrossRef
CAS
Google Scholar
IPCC (2000) Special Report on Emissions Scenarios. Cambridge University Press, Cambridge, UK
Google Scholar
IPCC (2001) Climate change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK
Google Scholar
IPCC (2007a) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Avery KB, Tignor M, Miller HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA
Google Scholar
Jackson RB, Jobbagy EG, Avissar R, Roy SB, Barrett DJ, Cook CW, Farley KA, le Maitre DC, McCarl MA, Murray BC (2005) Trading water for carbon with biological sequestration. Science 310:1944–1947
CrossRef
CAS
Google Scholar
Janssens IA, Freibauer A, Ciais P, Smith P, Nabuurs G-J, Folberth G, Schlamadinger B, Hutjes RWA, Ceulemans R, Schulze E-D, Valentini R, Dolman H (2003) Europe’s biosphere absorbs 7–12% of anthrogogenic carbon emissions. Science 300:1538–1542
CrossRef
CAS
Google Scholar
Jenkinson DS, Meredith J, Kinyamaro JI, Warren GP, Wong MTF, Harkness DD, Bol R, Coleman K (1999) Estimating net primary production from measurements made on soil organic matter. Ecology 80:2762–2773
CrossRef
Google Scholar
Jensen B, Christensen BT (2004) Interactions between elevated CO2 and added N: effects on water use, biomass, and soil 15 N uptake in wheat. Acta Agric Scand, Sect B 54:175–184
CAS
Google Scholar
Jones CD, Cox PM, Essery RLH, Roberts DL, Woodage MJ (2003) Strong carbon cycle feedbacks in a climate model with interactive CO2 and sulphate aerosols. Geophys Res Let 30, doi: 10.1029/2003GL016867
Google Scholar
Jones CD, Cox PM, Huntingford C (2006) Impact of Climate-Carbon Cycle Feedbacks on Emissions Scenarios to Achieve Stabilisation. Chapter 34 in “Avoiding Dangerous Climate Change”. C.U.P, London
Google Scholar
Jones CD, Falloon P (2007) Sources of uncertainty in future soil organic carbon storage. Chapter in forthcoming NATO workshop book
Google Scholar
Jones CD, McConnell C, Coleman KW, Cox P, Falloon PD, Jenkinson D, Powlson D (2004) Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Global Change Biol 11:154–166, doi: 10.1111/j.1365- 2486.2004.00885.x
CrossRef
Google Scholar
Knorr W, Prentice IC, House JC, Holland EA (2005), Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301
CrossRef
CAS
Google Scholar
Lal R (1999) Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect. Prog Environ Sci 1:307–326
CAS
Google Scholar
Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22
CrossRef
CAS
Google Scholar
Lal R (2004a) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627
CrossRef
CAS
Google Scholar
Laurance WF, Albernaz AKM, Fearnside PM, Vasconcelos HL, Ferreira LV (2004) Deforestation in Amazonia. Science 304:1109–1111
CrossRef
CAS
Google Scholar
Lean J, Warrilow DA (1989) Simulation of the regional climatic impact of Amazon deforestation. Nature 342:411–413
CrossRef
Google Scholar
Li C, Frolking S, Butterbach-Bahl K (2005) Carbon sequestration in arable soils is likely to increase nitrous oxide emissions offsetting reductions in climate radiative forcing. Clim Change72:321–338
CrossRef
CAS
Google Scholar
Liu L, King JS, Giardina CP (2005)Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch communities. Tree Physiol 25:1511–1522
CrossRef
CAS
Google Scholar
Long SP, Ainsworth AE, Leakey ADB, Nosberger J, Ort DR (2006) Food for thought: lower-thanexpected crop yield stimulation with rising CO2 concentrations. Science 312:1918–1921
CrossRef
CAS
Google Scholar
Loya WM, Pregitzer KS, Karberg NJ, King JS, Giardina JP (2003) eduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levels. Nature 425:705–707
CrossRef
CAS
Google Scholar
MacKenzie AF, Fan MX, Cadrin F (1998) Nitrous oxide emission in three years as affected by tillage, corn-soybean-alfalfa rotations, and nitrogen fertilization. J Environ Qual 27:698–703
CrossRef
CAS
Google Scholar
Metting FB, Smith JL, Amthor JS (1999) Science needs and new technology for soil carbon sequestration. In: Rosenberg NJ, Izaurralde RC, Malone EL (eds) Carbon Sequestration in Soils: Science, Monitoring and Beyond. Battelle Press, Columbus, OH, pp 1–34
Google Scholar
Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MS, Collins M, Stainforth DA (2004) Quanti cation of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772
CrossRef
CAS
Google Scholar
Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165
CrossRef
Google Scholar
Osborne TM, Lawrence DM, Challinor AJ, Slingo JM, Wheeler TR (2007). Development and assessment of a coupled crop-climate model. Global Change Biol 13:169–183
CrossRef
Google Scholar
Paustian K, Cole CV, Sauerbeck D, Sampson N (1998) CO2 mitigation by agriculture: an overview. Clim Change 40:135–162
CrossRef
CAS
Google Scholar
Paustian K, Elliott ET, Killian K (1997) Modeling soil carbon in relation to management and climate change in some agroecosystems in central North America. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Soil Processes and the Carbon Cycle. CRC Press, Boca Raton, FL, USA, pp 459–471
Google Scholar
Poulton PR, Pye E, Hargreaves PR, Jenkinson DS (2003) Accumulation of carbon and nitrogen by old arable land reverting to woodland. Global Change Biol 9:942–955
CrossRef
Google Scholar
Raddatz RL (2007) Evidence for the in uence of agriculture on weather and climate through the transformation and management of vegetation: illustrated by examples from the Canadian Prairies. Agric For Meteorol 142:186–202
CrossRef
Google Scholar
Robertson GP (2004) Abatement of nitrous oxide, methane and other non-CO2 greenhouse gases: the need for a systems approach. In: Field CB, Raupach MR (eds) The Global Carbon Cycle. Integrating Humans, Climate, and the natural World, Scope 62. Island Press, Washington, DC, pp 493–506
Google Scholar
Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289:1922–1925
CrossRef
CAS
Google Scholar
Rosenzweig C, Tubiello FN (2007) Adaptation and mitigation strategies in agriculture: an analysis of potential synergies. Mitig Adapt Strateg Global Change 12:855–873
CrossRef
Google Scholar
Schaeffer M, Eickhout B, HoogwijkM, Strengers B, van Vuuren D, Leemans R, Opsteegh T (2006) CO2 and albedo climate impacts of extratropical carbon and biomass plantations. Global Biogeochem Cycles 20, doi:10.1029/2005GB002581
Google Scholar
Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172
CrossRef
CAS
Google Scholar
Scholze M, Knorr W, Arnell NW, Prentice IC (2006) A climate-change risk analysis for world ecosystems. Proc Natl Acad Sci USA 103:13116–13120
CrossRef
CAS
Google Scholar
Seguin B, Arrouays D, Balesdent J, Soussana J-F, Bondeau A, Smith P, Zaehle S, de Noblet N, Viovy N (2007) Moderating the impact of agriculture on climate. Agric For Meteorol 142:278–287
CrossRef
Google Scholar
Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448:791–794, doi:10.1038/nature06059
CrossRef
CAS
Google Scholar
Six J, Ogle SM, Breidt FJ, Conant RT, Mosier AR, Paustian K (2004) The potential to mitigate global warming with no-tillage management is only realized when practiced in the long term. Global Change Biol 10:155–160
CrossRef
Google Scholar
Smith P (2004a) Engineered biological sinks on land. In: Field CB, Raupach MR (eds) The Global Carbon Cycle. Integrating Humans, Climate, and the Natural World, Scope 62. Island Press, Washington, DC, pp 479–491
Google Scholar
Smith P (2004b). Soils as carbon sinks – the global context. Soil Use Manag 20:212–218
Google Scholar
Smith P, Amézquita MC, Buendia L, Ewert F, Kuikman PJ, Leffelaar PA, Oenema O, Saletes S, Schils RLM, Soussana JF, Amstel AR, van Putten B, van, Verhagen A, Ambus P, Andrén O, Arrouays D, Ball B, Boeckx P, Brüning C, Buchmann N, Cellier P, Cernusca A, Clifton-Brown JC, Dämmgen U, Favoino E, Fiorelli JL, Flechard C, Freibauer A, Hacala S, Harrison R, Hiederer R, Janssens I, Jayet PA, Jouany JP, Jungkunst H, Karlsson T, Lagreid M, Leip A, Loiseau P, Milford C, Neftel A, Ogle S, Olesen JE, Perälä P, Pesmajoglou S, Petersen SO, Pilegaard K, Raschi A, Regina K, Rounsevell M, Seguin B, Sezzi E, Stefani P, Stengel P, Cleemput O, van, Wesemael B, van, Viovy N, Vuichard N, Weigel HJ, Weiske A, Willers HC, (2004) CarboEurope GHG: greenhouse gas emissions from European croplands. CarboEurope GHG, Specific Study Number 2, University of Tuscia, Viterbo, Italy. http://de.scientificcommons.org/1153908
Smith P (2005) Limited increase of agricultural soil carbon and nitrogen stocks due to increased atmospheric CO2 concentrations. J Crop Improv 13:393–399
CrossRef
CAS
Google Scholar
Smith JU, Bradbury NJ, Addiscott TM (1996) SUNDIAL: a PC-based system for simulating nitrogen dynamics in arable land. Agron J 88:38–43
CrossRef
Google Scholar
Smith P, Goulding KW, Smith KA, Powlson DS, Smith JU, Falloon PD, Coleman K (2001) Enhancing the carbon sink in European agricultural soils: including trace gas uxes in estimates of carbon mitigation potential. Nutr Cycl Agroecosyst 60:237–252
CrossRef
Google Scholar
Smith P, Martino D, Cai Z, Gwary D, Janzen HH, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes RJ, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith JU (2007a) Greenhouse gas mitigation in agriculture. Phil Trans R Soc London B 363, doi: 10.1098/rstb.2007.2184
Google Scholar
Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Rose S, Schneider U, Towprayoon S, Wattenbach M, Rypdal K, wa Githendu M (2007b) Chapter 8 Agriculture. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA
Google Scholar
Smith P, Powlson DS, Smith JU, Falloon PD, Coleman K (2000) Meeting Europe’s climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture. Global Change Biol 6:525–539
CrossRef
Google Scholar
Smith JU, Smith P, Wattenbach M, Zaehle S, Hiederer R, Jones RJA, Montanarella L, Rounsevell MA, Reginster I, Ewert F (2005) Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Global Change Biol 11:2141–2152
CrossRef
Google Scholar
Torbert HA, Prior SA, Hogers HH, Wood CW (2000) Review of elevated atmospheric CO2 effects on agro-ecosystems: residue decomposition processes and soil C storage. Plant Soil 224:59–73
CrossRef
CAS
Google Scholar
van Groenigen KJ, Gorissen A, Six J, Harris D, Kuikman PJ, van Groenigen JW, van Kessel C (2005) Decomposition of 14C-labeled roots in a pasture soil exposed to 10 years of elevated CO2. Soil Biol Biochem 37:497–506
CrossRef
Google Scholar
van Groenigen K-J, Six J, Hungate Ba, de Graaff M-A, van Breemen N, van Kessel C (2006) Element interactions limit soil carbon storage. Proc Natl Acad Sci USA 103:6571–6574
CrossRef
Google Scholar
Vergé XPC, De Kimpe C, Desjardins RL (2007) Agricultural production, greenhouse gas emissions and mitigation potential. Agric For Meteorol 142:255–269
CrossRef
Google Scholar