Skip to main content

Carbon Sequestration and Greenhouse Gas Fluxes from Cropland Soils – Climate Opportunities and Threats

Part of the Environmental Science and Engineering book series (ESE)

Abstract

Globally, soils contain approximately 1500 Pg (1 Pg = 1Gt = 1015 g) of organic carbon (C) (Batjes 1996), roughly three times the amount of carbon in vegetation and twice the amount in the atmosphere (IPCC 2001). The annual uxes of carbon dioxide (CO2) from atmosphere to land (global Net Primary Productivity [NPP]) and land to atmosphere (respiration and re) are of the order of 60 Pg Cyr−1 (IPCC 2001). during 1990s, fossil fuel combustion and cement production emitted 6.3 ± 1.3 Pg Cyr−1 to the atmosphere, while land-use change accounted for 1.6 ± 0.8PgCyr−1 (Schimel et al. 2001; IPCC 2001).Atmospheric C increased at a rate of 3.2 ± 0.1PgCyr−1, the oceans absorbed 2.3 ± 0.8PgCyr−1 and therewas an estimated terrestrial sink of 2.3 ± 1.3PgCyr−1 (Schimel et al. 2001; IPCC 2001). The amount of carbon stored in soils globally is, therefore, very large compared to gross and net annual uxes of carbon to and from the terrestrial biosphere, and the pools of carbon in the atmosphere and vegetation. Human intervention, via cultivation and disturbance, has also decreased the soil carbon pools relative to the store typically achieved under native vegetation. Historically, these processes have caused a loss of soil C between 40 and 90 Pg C globally (Paustian et al. 1998; Houghton et al. 1999; Lal 1999). Hence, increasing the size of the global soil carbon pool by even a small proportion has the potential to sequester large amounts of carbon, and thus help mitigate climate change.

Keywords

  • Carbon Sequestration
  • Soil Carbon
  • Mitigation Potential
  • Global Change Biol
  • Soil Carbon Stock

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-88246-6_5
  • Chapter length: 31 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-88246-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allard V, Newton PCD, Lieffering M, Soussana J-F, Grieu P, Matthew C (2004) Elevated CO2 effects on decomposition processes in a grazed grassland. Global Change Biol 10:1553–1564

    CrossRef  Google Scholar 

  • Amthor JS (1998) Serching for a relationship between forest water use and increasing atmospheric CO2 concentration with long-term hydrologic data from the Hubbard Brook Experimental Forest. Environ Sci Div Publ 4833, Oak Ridge Nat Lab, Oak Ridge, TN

    Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    CrossRef  CAS  Google Scholar 

  • Betts RA (2001) Biogeophysical impacts of land use on present-day climate: near-surface temperature change and radiative forcing. Atmos Sci Lett doi:1006/asle.2001.0023

    Google Scholar 

  • Betts RA (2005) Integrated approaches to climate-crop modelling: needs and challenges. Phil Trans R Soc London A 360:2049–2065

    CrossRef  CAS  Google Scholar 

  • Betts RA (2007) Implications of land ecosystem–atmosphere interactions for strategies for climate change adaptation and mitigation. Tellus B 59:602–615

    CrossRef  Google Scholar 

  • Betts RA, Boucher O, Collins M, Cox PM, Falloon P, Gedney N, Hemming DL, Huntingford C, Jones CD, Sexton D, Webb M (2007a) Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448:1037–1041, doi:10.1038/nature06045

    Google Scholar 

  • Betts RA, Cox PM, Collins M, Harris PP, Huntingford C, Jones CD (2004) The role of ecosystem– atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor Appl Climatol 78:157–175

    CrossRef  Google Scholar 

  • Betts R, Falloon P, Challinor A, Hemming D (2006) Assessing uncertainties in key climate change impacts indicators. Defra Milestone 04/07 13.06.05, Physical, chemical, biological effects of climate change, June 05 2006. Report to Defra, Met Of ce Hadley Centre, Exeter, UK

    Google Scholar 

  • Betts R, Falloon P, Klein Goldewijk K, Ramankutty N (2007b) Biogeophysical effects of land use on climate: model simulations of radiative forcing and large-scale temperature change. Agric For Meteorol 142:216–233

    Google Scholar 

  • Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk GJD (2005) Carbon losses from all soils across England and Wales 1978–2003. Nature 437:245–248

    CrossRef  CAS  Google Scholar 

  • Bondeau A, Smith PC, Zaehle S, et al. (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biol 13:679–706

    CrossRef  Google Scholar 

  • Booker FL, Fiscus EL (2005) The role of ozone ux and antioxidants in the suppression of ozone injury by elevated CO2 in soybean. J Exp Botany 56:2139–2151

    CrossRef  CAS  Google Scholar 

  • Boucher O, Myhre G, Myhre A (2004) Direct in uence of irrigation on atmospheric water vapour and climate. Clim Dyn 22:597–603

    CrossRef  Google Scholar 

  • Bradley RI, Moffat AJ Falloon P (2005) Climate change and soil function. Research Report to Defra SP0538. Cran el d University, Cran el d, UK

    Google Scholar 

  • Buyanovsky GA, Wagner GH (1998) Changing role of cultivated land in the global carbon cycle. Biol Fertil Soils 27:242–245

    CrossRef  CAS  Google Scholar 

  • Cannell MGR (2003) Carbon sequestration and biomass energy offset: theoretical, potential and achievable capacities globally, in Europe and the UK. Biomass Bioenergy 24:97–116

    CrossRef  Google Scholar 

  • CEC (2004) Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection. 6 Vol EUR 21319 EN. European Commission, Luxembourg

    Google Scholar 

  • Challinor AJ, Wheeler TR, Slingo JM, Hemming D (2005) Quanti cation of physical and biological uncertainty in the simulation of the yield of a tropical crop using present day and doubled CO2 climates. Phil Trans R Soc B 360:2085–2094, doi:10.1098/rstb.2005.1740

    CrossRef  CAS  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Buchmann N, Aubinet M, Bernhofer C, Carrara A, Chevallier F, Denoblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Pilegaard K, Rambal S, Seufert G, Soussana J, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Unprecedented reduction in European primary productivity caused by heat and drought in 2003. Nature 437:529–533

    CrossRef  CAS  Google Scholar 

  • Cowling SA, Betts RA, Cox PM, Ettwein VJ, Jones CD, Maslin MA, Spall SA (2004) Contrasting simulated past and future responses of the Amazonian forest to atmospheric change. Phil Trans R Soc 359:539–547

    CrossRef  CAS  Google Scholar 

  • Cox PM, Betts RA, Collins M, Harris PP, Huntingford C, Jones CD (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st Century. Theor Appl Climatol 78:137–156

    CrossRef  Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    CrossRef  CAS  Google Scholar 

  • Davidson E, Janssens I (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    CrossRef  CAS  Google Scholar 

  • Department for Food Environment and Rural Affairs (Defra) (2003) The First Soil Action Plan for England: 2004–2006. Defra, London, UK

    Google Scholar 

  • Desjardins RL, Sivakumar MVK, de Kimpe C (2007) The contribution of agriculture to the state of climate: workshop summary and recommendations. Agric For Meteorol 142:314–324

    CrossRef  Google Scholar 

  • Easterling WE, Aggarwal PK, Batima P, Brander KM, Erda L, Howden SM, Kirilenko A, Morton J, Soussana J-F, Schmidhuber J, Tubiello FN (2007) Food, fibre and forest products. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp273–313

    Google Scholar 

  • Falloon P (2001) Large scale spatial modelling of soil organic matter dynamics. Ph.D. Thesis, School of Life and Environmental Sciences, University of Nottingham, UK

    Google Scholar 

  • Falloon P (2004) Using RothC with climate and land use change at the 1 km scale. Section 7 In: Milne R (ed) Carbon Sequestration in Vegetation and Soils. Annual Report for DEFRA Contract GA01054 May 2004, CEH Edinburgh, UK

    Google Scholar 

  • Falloon P, Betts R (2006) The impact of land use change on climate in HadGEM1 simulations. Defra Milestone 04/07 13.01.06. Physical, Chemical, Biological Effects of Climate Change, September 2006. 29/09/06. Report to Defra. Met Office Hadley Centre, Exeter, UK

    Google Scholar 

  • Falloon P, Jones CD, Cerri CE, Al-Adamat R, Kamoni P, Batacharya T, Easter M, Paustian K, Killian K, Coleman K, Milne E (2007a) Climate change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil. Agric Ecosys Environ 122:114–124

    Google Scholar 

  • Falloon P, Jones CD, Hemming DL (2006b) Uncertainty in global soil carbon feedbacks. Defra Milestone Report 08/03 08.03.06. The Global Carbon Cycle and Ecosystems, November 2006. Met Office Hadley Centre, Exeter UK

    Google Scholar 

  • Falloon PD, Smith P (2003a) Modelling soil carbon fluxes and land use change for the National Carbon Dioxide Inventory. Final Research Report to Defra Contract CC0242. Rothamsted Research, Harpenden, UK

    Google Scholar 

  • Falloon P, Smith P (2003b) Accounting for changes in soil carbon under Kyoto: long-term data-sets need to be improved to reduce uncertainty associated with model projections. Soil Use Manag 19:265–269

    Google Scholar 

  • Falloon P, Smith P, Bradley RI, Milne R, Tomlinson R, Viner D, Livermore M, Brown T (2006a) RothCUK– a dynamic modelling system for estimating changes in soil C from mineral soils at 1-km resolution in the UK. Soil Use Manag 22:274–288, doi: 10.1111/j.1475-2743.2006.00028.x

    Google Scholar 

  • Falloon PD, Smith P, Smith JU, Szabo J, Coleman K, Marshall S (1998) Regional estimates of carbon sequestration potential: linking the Rothamsted carbon turnover model to GIS databases. Biol Fertil Soils 27:236–241

    CrossRef  CAS  Google Scholar 

  • Fang C, Smith P, Moncrieff J, Smith JU (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433:57–59

    CrossRef  CAS  Google Scholar 

  • Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE, Meehl GA, Washington WM (2001) The importance of land cover change in simulating future climates. Science 310:1674–1678

    CrossRef  Google Scholar 

  • Felzer B, Reilly J, Melillo J, Kicklighter D, Wang C, Prinn R, Saro m M, Zhuang Q (2005) Past and future effects of ozone on net primary production and carbon sequestration using a global biogeochemical model. Clim Change 73:345–373. doi:10.1007/S10584-005-6776-4

    CrossRef  CAS  Google Scholar 

  • Fischlin A, Midgley GF, Price JT, Leemans R, Gopal R, Turley C, Rounsevell MDA, Dube OP, Tarazona J, Velichko AA (2007) Ecosystems, their properties, goods, and services. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp211–272

    Google Scholar 

  • Freibauer A, Rounsevell M, Smith P, Verhagen A (2004) Carbon sequestration in European agricultural soils. Geoderma 122:1–23

    CrossRef  CAS  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Doney S, Eby M, Fung I, Govindasamy B, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Thompson S, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis, results from the C4MIP model inter-comparison. J Clim 19:3337–3353

    CrossRef  Google Scholar 

  • Friedlingstein P, Dufresne JL, Cox PM, Rayner P (2003) How positive is the feedback between climate change and the carbon cycle? Tellus B 55B:692–700

    CAS  Google Scholar 

  • Giardina C, Ryan M (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861

    CrossRef  CAS  Google Scholar 

  • Gill RA, Polley HW, Johnson HB, Anderson LJ, Maherali H, Jackson RB (2002) Nonlinear grassland responses to past and future atmospheric CO2. Nature 417:279–282

    CrossRef  CAS  Google Scholar 

  • Gullison RE, Frumhoff PC, Canadell JG, Field CB, Nepstad DC, Hayhoe K, Avissar R, Curran LM, Friedlingstein P, Jones CD, Nobre C (2007) Tropical forests and climate policy. Science 316:985–986, doi: 10.1126/science.1136163

    CrossRef  CAS  Google Scholar 

  • Guo J, Zhou C (2007) Greenhouse gas emissions and mitigation measures in Chinese agroecosystems. Agric For Meteorol 142:270–277

    CrossRef  Google Scholar 

  • Harrison RG, Jones CD, Hughes JK (2008) Competing roles of rising CO2 and climate change in the contemporary European carbon balance. Biogeosciences 5:1–10

    CrossRef  CAS  Google Scholar 

  • Henry HAL, Cleland EE, Field CB, Vitousek PM (2005) Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland. Oecologia 142:465–473

    CrossRef  Google Scholar 

  • Houghton RA, Hackler JL, Lawrence KT (1999) The US carbon budget: contributions form land-use change. Science 285:574–578

    CrossRef  CAS  Google Scholar 

  • IPCC (2000) Special Report on Emissions Scenarios. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • IPCC (2007a) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Avery KB, Tignor M, Miller HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA

    Google Scholar 

  • Jackson RB, Jobbagy EG, Avissar R, Roy SB, Barrett DJ, Cook CW, Farley KA, le Maitre DC, McCarl MA, Murray BC (2005) Trading water for carbon with biological sequestration. Science 310:1944–1947

    CrossRef  CAS  Google Scholar 

  • Janssens IA, Freibauer A, Ciais P, Smith P, Nabuurs G-J, Folberth G, Schlamadinger B, Hutjes RWA, Ceulemans R, Schulze E-D, Valentini R, Dolman H (2003) Europe’s biosphere absorbs 7–12% of anthrogogenic carbon emissions. Science 300:1538–1542

    CrossRef  CAS  Google Scholar 

  • Jenkinson DS, Meredith J, Kinyamaro JI, Warren GP, Wong MTF, Harkness DD, Bol R, Coleman K (1999) Estimating net primary production from measurements made on soil organic matter. Ecology 80:2762–2773

    CrossRef  Google Scholar 

  • Jensen B, Christensen BT (2004) Interactions between elevated CO2 and added N: effects on water use, biomass, and soil 15 N uptake in wheat. Acta Agric Scand, Sect B 54:175–184

    CAS  Google Scholar 

  • Jones CD, Cox PM, Essery RLH, Roberts DL, Woodage MJ (2003) Strong carbon cycle feedbacks in a climate model with interactive CO2 and sulphate aerosols. Geophys Res Let 30, doi: 10.1029/2003GL016867

    Google Scholar 

  • Jones CD, Cox PM, Huntingford C (2006) Impact of Climate-Carbon Cycle Feedbacks on Emissions Scenarios to Achieve Stabilisation. Chapter 34 in “Avoiding Dangerous Climate Change”. C.U.P, London

    Google Scholar 

  • Jones CD, Falloon P (2007) Sources of uncertainty in future soil organic carbon storage. Chapter in forthcoming NATO workshop book

    Google Scholar 

  • Jones CD, McConnell C, Coleman KW, Cox P, Falloon PD, Jenkinson D, Powlson D (2004) Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Global Change Biol 11:154–166, doi: 10.1111/j.1365- 2486.2004.00885.x

    CrossRef  Google Scholar 

  • Knorr W, Prentice IC, House JC, Holland EA (2005), Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301

    CrossRef  CAS  Google Scholar 

  • Lal R (1999) Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect. Prog Environ Sci 1:307–326

    CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    CrossRef  CAS  Google Scholar 

  • Lal R (2004a) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    CrossRef  CAS  Google Scholar 

  • Laurance WF, Albernaz AKM, Fearnside PM, Vasconcelos HL, Ferreira LV (2004) Deforestation in Amazonia. Science 304:1109–1111

    CrossRef  CAS  Google Scholar 

  • Lean J, Warrilow DA (1989) Simulation of the regional climatic impact of Amazon deforestation. Nature 342:411–413

    CrossRef  Google Scholar 

  • Li C, Frolking S, Butterbach-Bahl K (2005) Carbon sequestration in arable soils is likely to increase nitrous oxide emissions offsetting reductions in climate radiative forcing. Clim Change72:321–338

    CrossRef  CAS  Google Scholar 

  • Liu L, King JS, Giardina CP (2005)Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch communities. Tree Physiol 25:1511–1522

    CrossRef  CAS  Google Scholar 

  • Long SP, Ainsworth AE, Leakey ADB, Nosberger J, Ort DR (2006) Food for thought: lower-thanexpected crop yield stimulation with rising CO2 concentrations. Science 312:1918–1921

    CrossRef  CAS  Google Scholar 

  • Loya WM, Pregitzer KS, Karberg NJ, King JS, Giardina JP (2003) eduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levels. Nature 425:705–707

    CrossRef  CAS  Google Scholar 

  • MacKenzie AF, Fan MX, Cadrin F (1998) Nitrous oxide emission in three years as affected by tillage, corn-soybean-alfalfa rotations, and nitrogen fertilization. J Environ Qual 27:698–703

    CrossRef  CAS  Google Scholar 

  • Metting FB, Smith JL, Amthor JS (1999) Science needs and new technology for soil carbon sequestration. In: Rosenberg NJ, Izaurralde RC, Malone EL (eds) Carbon Sequestration in Soils: Science, Monitoring and Beyond. Battelle Press, Columbus, OH, pp 1–34

    Google Scholar 

  • Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MS, Collins M, Stainforth DA (2004) Quanti cation of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772

    CrossRef  CAS  Google Scholar 

  • Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165

    CrossRef  Google Scholar 

  • Osborne TM, Lawrence DM, Challinor AJ, Slingo JM, Wheeler TR (2007). Development and assessment of a coupled crop-climate model. Global Change Biol 13:169–183

    CrossRef  Google Scholar 

  • Paustian K, Cole CV, Sauerbeck D, Sampson N (1998) CO2 mitigation by agriculture: an overview. Clim Change 40:135–162

    CrossRef  CAS  Google Scholar 

  • Paustian K, Elliott ET, Killian K (1997) Modeling soil carbon in relation to management and climate change in some agroecosystems in central North America. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Soil Processes and the Carbon Cycle. CRC Press, Boca Raton, FL, USA, pp 459–471

    Google Scholar 

  • Poulton PR, Pye E, Hargreaves PR, Jenkinson DS (2003) Accumulation of carbon and nitrogen by old arable land reverting to woodland. Global Change Biol 9:942–955

    CrossRef  Google Scholar 

  • Raddatz RL (2007) Evidence for the in uence of agriculture on weather and climate through the transformation and management of vegetation: illustrated by examples from the Canadian Prairies. Agric For Meteorol 142:186–202

    CrossRef  Google Scholar 

  • Robertson GP (2004) Abatement of nitrous oxide, methane and other non-CO2 greenhouse gases: the need for a systems approach. In: Field CB, Raupach MR (eds) The Global Carbon Cycle. Integrating Humans, Climate, and the natural World, Scope 62. Island Press, Washington, DC, pp 493–506

    Google Scholar 

  • Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289:1922–1925

    CrossRef  CAS  Google Scholar 

  • Rosenzweig C, Tubiello FN (2007) Adaptation and mitigation strategies in agriculture: an analysis of potential synergies. Mitig Adapt Strateg Global Change 12:855–873

    CrossRef  Google Scholar 

  • Schaeffer M, Eickhout B, HoogwijkM, Strengers B, van Vuuren D, Leemans R, Opsteegh T (2006) CO2 and albedo climate impacts of extratropical carbon and biomass plantations. Global Biogeochem Cycles 20, doi:10.1029/2005GB002581

    Google Scholar 

  • Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172

    CrossRef  CAS  Google Scholar 

  • Scholze M, Knorr W, Arnell NW, Prentice IC (2006) A climate-change risk analysis for world ecosystems. Proc Natl Acad Sci USA 103:13116–13120

    CrossRef  CAS  Google Scholar 

  • Seguin B, Arrouays D, Balesdent J, Soussana J-F, Bondeau A, Smith P, Zaehle S, de Noblet N, Viovy N (2007) Moderating the impact of agriculture on climate. Agric For Meteorol 142:278–287

    CrossRef  Google Scholar 

  • Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448:791–794, doi:10.1038/nature06059

    CrossRef  CAS  Google Scholar 

  • Six J, Ogle SM, Breidt FJ, Conant RT, Mosier AR, Paustian K (2004) The potential to mitigate global warming with no-tillage management is only realized when practiced in the long term. Global Change Biol 10:155–160

    CrossRef  Google Scholar 

  • Smith P (2004a) Engineered biological sinks on land. In: Field CB, Raupach MR (eds) The Global Carbon Cycle. Integrating Humans, Climate, and the Natural World, Scope 62. Island Press, Washington, DC, pp 479–491

    Google Scholar 

  • Smith P (2004b). Soils as carbon sinks – the global context. Soil Use Manag 20:212–218

    Google Scholar 

  • Smith P, Amézquita MC, Buendia L, Ewert F, Kuikman PJ, Leffelaar PA, Oenema O, Saletes S, Schils RLM, Soussana JF, Amstel AR, van Putten B, van, Verhagen A, Ambus P, Andrén O, Arrouays D, Ball B, Boeckx P, Brüning C, Buchmann N, Cellier P, Cernusca A, Clifton-Brown JC, Dämmgen U, Favoino E, Fiorelli JL, Flechard C, Freibauer A, Hacala S, Harrison R, Hiederer R, Janssens I, Jayet PA, Jouany JP, Jungkunst H, Karlsson T, Lagreid M, Leip A, Loiseau P, Milford C, Neftel A, Ogle S, Olesen JE, Perälä P, Pesmajoglou S, Petersen SO, Pilegaard K, Raschi A, Regina K, Rounsevell M, Seguin B, Sezzi E, Stefani P, Stengel P, Cleemput O, van, Wesemael B, van, Viovy N, Vuichard N, Weigel HJ, Weiske A, Willers HC, (2004) CarboEurope GHG: greenhouse gas emissions from European croplands. CarboEurope GHG, Specific Study Number 2, University of Tuscia, Viterbo, Italy. http://de.scientificcommons.org/1153908

  • Smith P (2005) Limited increase of agricultural soil carbon and nitrogen stocks due to increased atmospheric CO2 concentrations. J Crop Improv 13:393–399

    CrossRef  CAS  Google Scholar 

  • Smith JU, Bradbury NJ, Addiscott TM (1996) SUNDIAL: a PC-based system for simulating nitrogen dynamics in arable land. Agron J 88:38–43

    CrossRef  Google Scholar 

  • Smith P, Goulding KW, Smith KA, Powlson DS, Smith JU, Falloon PD, Coleman K (2001) Enhancing the carbon sink in European agricultural soils: including trace gas uxes in estimates of carbon mitigation potential. Nutr Cycl Agroecosyst 60:237–252

    CrossRef  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen HH, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes RJ, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith JU (2007a) Greenhouse gas mitigation in agriculture. Phil Trans R Soc London B 363, doi: 10.1098/rstb.2007.2184

    Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Rose S, Schneider U, Towprayoon S, Wattenbach M, Rypdal K, wa Githendu M (2007b) Chapter 8 Agriculture. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA

    Google Scholar 

  • Smith P, Powlson DS, Smith JU, Falloon PD, Coleman K (2000) Meeting Europe’s climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture. Global Change Biol 6:525–539

    CrossRef  Google Scholar 

  • Smith JU, Smith P, Wattenbach M, Zaehle S, Hiederer R, Jones RJA, Montanarella L, Rounsevell MA, Reginster I, Ewert F (2005) Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Global Change Biol 11:2141–2152

    CrossRef  Google Scholar 

  • Torbert HA, Prior SA, Hogers HH, Wood CW (2000) Review of elevated atmospheric CO2 effects on agro-ecosystems: residue decomposition processes and soil C storage. Plant Soil 224:59–73

    CrossRef  CAS  Google Scholar 

  • van Groenigen KJ, Gorissen A, Six J, Harris D, Kuikman PJ, van Groenigen JW, van Kessel C (2005) Decomposition of 14C-labeled roots in a pasture soil exposed to 10 years of elevated CO2. Soil Biol Biochem 37:497–506

    CrossRef  Google Scholar 

  • van Groenigen K-J, Six J, Hungate Ba, de Graaff M-A, van Breemen N, van Kessel C (2006) Element interactions limit soil carbon storage. Proc Natl Acad Sci USA 103:6571–6574

    CrossRef  Google Scholar 

  • Vergé XPC, De Kimpe C, Desjardins RL (2007) Agricultural production, greenhouse gas emissions and mitigation potential. Agric For Meteorol 142:255–269

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pete Falloon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Falloon, P. et al. (2009). Carbon Sequestration and Greenhouse Gas Fluxes from Cropland Soils – Climate Opportunities and Threats. In: Singh, S.N. (eds) Climate Change and Crops. Environmental Science and Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88246-6_5

Download citation