Old Handwritten Musical Symbol Classification by a Dynamic Time Warping Based Method

  • Alicia Fornés
  • Josep Lladós
  • Gemma Sánchez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5046)


A growing interest in the document analysis field is the recognition of old handwritten documents, towards the conversion into a readable format. The difficulties when we work with old documents are increased, and other techniques are required for recognizing handwritten graphical symbols that are drawn in such these documents. In this paper we present a Dynamic Time Warping based method that outperforms the classical descriptors, being also invariant to scale, rotation, and elastic deformations typical found in handwriting musical notation.


Dynamic Time Warping Zernike Moment Input Symbol Symbol Recognition Handwritten Document 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blostein, D., Baird, H.: A Critical Survey of Music Image Analysis. In: Baird, H., Bunke, H., Yamamoto, K. (eds.) Structured Document Image Analysis, pp. 405–434. Springer, Heidelberg (1992)Google Scholar
  2. 2.
    Pinto, J.C., Vieira, P., Sosa, J.M.: A new graph-like classification method applied to ancient handwritten musical symbols. International Journal of Document Analysis and Recognition 6(1), 10–22 (2003)CrossRefGoogle Scholar
  3. 3.
    Carter, N.P.: Segmentation and preliminary recognition of madrigals notated in white mensural notation. Machine Vision and Applications 5(3), 223–230 (1995)CrossRefGoogle Scholar
  4. 4.
    Lladós, J., Valveny, E., Sánchez, G., Martí, E.: Symbol Recognition: Current Advances and Perspectives. In: Blostein, D., Kwon, Y.B. (eds.) GREC 2001. LNCS, vol. 2390, pp. 104–127. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognition 37, 1–19 (2004)zbMATHCrossRefGoogle Scholar
  6. 6.
    Kruskal, J., Liberman, M.: The symmetric time-warping problem: from continuous to discrete. In: Sankoff, D., Kruskal, J. (eds.) Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison, pp. 125–161. Addison-Wesley Publishing Co., Reading (1983)Google Scholar
  7. 7.
    Aach, J., Church, G.: Aligning gene expression time series with time warping algorithms. Bioinformatics 17(6), 495–508 (2001)CrossRefGoogle Scholar
  8. 8.
    Clote, P., Straubhaar, J.: Symmetric time warping, Boltzmann pair probabilities and functional genomics. Journal of Mathematical Biology 53(1), 135–161 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gavrila, D.M., Davis, L.S.: Towards 3-D Model-based Tracking and Recognition of Human Movement. In: Bichsel, M. (ed.) Int. Workshop on Face and Gesture Recognition, pp. 272–277 (1995)Google Scholar
  10. 10.
    Keogh, E., Pazzani, M.: Scaling up dynamic time warping to massive datasets. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 1–11. Springer, Heidelberg (1999)Google Scholar
  11. 11.
    Orio, N., Schwarz, D.: Alignment of monophonic and polyphonic music to a score. In: 2001 International Computer Music Conference, Havana, Cuba, pp. 155–158. International Computer Music Association, San Francisco (2001)Google Scholar
  12. 12.
    Rath, T., Manmatha, R.: Word image matching using dynamic time warping. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, WI, vol. 2, pp. 521–527 (2003)Google Scholar
  13. 13.
    Rath, T.M., Manmatha, R.: Lower-Bounding of Dynamic Time Warping Distances for Multivariate Time Series. Technical Report MM-40, Center for Intelligent Information Retrieval, University of Massachusetts Amherst (2003)Google Scholar
  14. 14.
    Kornfield, E.M., Manmatha, R., Allan, J.: Text Alignment with Handwritten Documents. In: First International Workshop on Document Image Analysis for Libraries, pp. 195–209. IEEE Computer Society, Washington (2004)CrossRefGoogle Scholar
  15. 15.
    Vuori, V.: Adaptive Methods for On-Line Recognition of Isolated Handwritten Characters. PhD thesis, Helsinki University of Technology (2002)Google Scholar
  16. 16.
    Fornés, A., Lladós, J., Sánchez, G.: Primitive segmentation in old handwritten music scores, In: Liu, W., Lladós, J. (eds.) Graphics Recognition: Ten Years Review and Future Perspectives. LNCS, vol. 3926, pp. 279–290. Springer-Verlag (2006).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alicia Fornés
    • 1
  • Josep Lladós
    • 1
  • Gemma Sánchez
    • 1
  1. 1.Computer Vision Center, Dept. of Computer ScienceUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations