Skip to main content

Entanglement in Phase Space

  • Chapter
Entanglement and Decoherence

Part of the book series: Lecture Notes in Physics ((LNP,volume 768))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Schrödinger: Quantisierung als Eigenwertproblem, Ann. der Physik 81, 109 (1926)

    Article  Google Scholar 

  2. E. Schrödinger: Die gegenwärtige Situation in der Quantenmechanik, Naturwiss. 23, 807 (1935)

    Article  ADS  Google Scholar 

  3. A. Einstein , B. Podolsky and N. Rosen: Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47, 777 (1935)

    Google Scholar 

  4. J. S. Bell: On the Einstein Podolsky Rosen paradox, Physics 1, 195 (1964)

    Google Scholar 

  5. J. S. Bell: Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge 1993)

    Google Scholar 

  6. M. A. Nielsen and L. I. Chuang: Quantum Computation and Quantum Information (Cambridge University Press, Cambridge 2003)

    Google Scholar 

  7. D. Bohm: Quantum Theory (Prentice Hall, New York 1951)

    Google Scholar 

  8. P. W. Schleich: Quantum Optics in Phase Space (Wiley-VCH, Berlin 2001)

    Book  MATH  Google Scholar 

  9. R. P. Feynman: Space-time approach to non-relativistic quantum mechanics, Rev. Mod. Phys. 20, 367 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  10. L. S. Schulman: Techniques and Applications of Path Integration (Wiley, New York 1981)

    MATH  Google Scholar 

  11. J. W. S. Rayleigh: The Theory of Sound (Dover Publications, New York 1976)

    Google Scholar 

  12. V. I. Arnold: Mathematical Methods of Classical Mechanics (Springer, Berlin 1978)

    Google Scholar 

  13. A. Peres: Quantum Theory: Concepts and Methods (Kluwer Academic, Dordrecht 1993)

    MATH  Google Scholar 

  14. J. F. Clauser, R. A. Holt, M. A. Horne and A. Shimony: Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  15. J. S. Bell: Bertlmann’s socks and the nature of reality, J. de Physique 42, C2 41 (1981).

    Google Scholar 

  16. H. Goldstein: Classical Mechanics, 2nd edn (Addison-Wesley, Reading, 1980)

    MATH  Google Scholar 

  17. A. Voros: Semi-classical approximations, Ann. Inst. Henri Poincaré 24, 31 (1976)

    MathSciNet  Google Scholar 

  18. A. M. Ozorio de Almeida: Hamiltonian Systems: Chaos and Quantization (Cambridge University Press, Cambridge 1988)

    MATH  Google Scholar 

  19. M. C. Gutzwiller: Chaos in Classical and Quantum Mechanics (Springer, New York 1990)

    MATH  Google Scholar 

  20. V. P. Maslov and M. V. Fedoriuk: Semiclassical Approximation in Quantum Mechanics (Reidel, Dordrecht 1981)

    Google Scholar 

  21. J. H. Van Vleck: The correspondence principle in the statistical interpretation of quantum mechanics, Proc. Natl. Acad. Sci. USA 14, 178 (1928)

    Article  MATH  ADS  Google Scholar 

  22. A. M. Ozorio de Almeida and J. Hannay: Geometry of two dimensional tori in phase space: Projections, sections and the Wigner function, Ann. Phys. 138, 115 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. R. J. Glauber: Coherent and incoherent states of the radiation field, Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  24. J. R. Klauder and B. Skagerstam: Coherent States (World Scientific, Singapore 1985)

    MATH  Google Scholar 

  25. A. Perelomov: Generalized Coherent States and their Applications (Springer, New York 1986)

    MATH  Google Scholar 

  26. C. Cohen Tannoudji, B. Diu and F. Laeoe: Quantum Mechanics (Wiley, New York 1977)

    Google Scholar 

  27. A. Messiah: Quantum Mechanics (North Holland, Amsterdam 1961)

    Google Scholar 

  28. L. G. Lutterbach and L. Davidovich: Method for direct measurement of the Wigner function in cavity QED and ion traps, Phys. Rev. Lett. 78, 2547 (1997)

    Article  ADS  Google Scholar 

  29. R. G. Littlejohn. In: Quantum Chaos: Between Order and Disorder, ed by G. Casati and B. Chirikov (Cambridge University Press, Cambridge 1995) p. 343

    Google Scholar 

  30. J. P. Amiet and P. Huguenin: Generating functions of canonical maps, Helvet. Phys. Acta 53, 377 (1980)

    MathSciNet  Google Scholar 

  31. H. S. M. Coxeter: Introduction to Geometry (Wiley, New York 1969)

    MATH  Google Scholar 

  32. A. M. Ozorio de Almeida, O. Vallejos and M. Saraceno: Pure state correlations: chords in phase space, J. Phys. A 38, 1473 (2004) and arXiv:quant-ph/ 0410129

    Article  ADS  MathSciNet  Google Scholar 

  33. A. M. Ozorio de Almeida: The Weyl representation in classical and quantum mechanics, Phys. Rep. 295, 265 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  34. P. Bertet, A. Auffeves, P. Maioli, S. Ornaghi, T. Meunier, M. Brune, J. M. Raimond and S. Haroche: Direct measurement of the Wigner function of a one-photon fock state in a cavity, Phys. Rev. Lett. 89, 200402 (2002)

    Article  ADS  Google Scholar 

  35. N. L. Balazs and B. K. Jennings: Wigner’s function and other distribution functions in mock phase spaces, Phys. Rep. 104, 347 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Grossmann and P. Huguenin: Group-theoretical aspects of the Wigner–Weyl isomorphism, Helv. Phys. Acta 51, 252 (1978)

    Google Scholar 

  37. E. P. Wigner: On the Quantum correction for thermodynamic equilibrium, Phys. Rev. 40, 749 (1932)

    Article  MATH  ADS  Google Scholar 

  38. E. Schrödinger: Zum Heisenbergschen Unschärfeprinzip, Proc. Pruss. Acad. Sci. 19, 296 (1930)

    Google Scholar 

  39. S. R. Deans: The Radon Transform and Some of Its Applications (John Wiley & Sons, New York 1983)

    MATH  Google Scholar 

  40. A. Grossmann: Parity operator and quantization of δ-functions, Commun. Math. Phys. 48, 191 (1976)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. A. Royer: Wigner function as the expectation value of a parity operator, Phys. Rev. A 15, 449 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  42. W. H. Zurek: Sub-Planck structure in phase space and its relevance for quantum decoherence, Nature 412, 712 (2001)

    Article  ADS  Google Scholar 

  43. R. L. Hudson: When is the wigner quasi-probability density non-negative?, Rep. Math. Phys. 6, 249 (1974)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. V. I. Tatarskii: The Wigner representation of quantum mechanics, Sov. phys. Usp. 26, 311 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  45. A. M. Ozorio de Almeida and O. Brodier: Parity measurements, decoherence and spiky Wigner functions, J. Phys. A 37, L245 (2004)

    Article  MathSciNet  Google Scholar 

  46. H. J. Grönewold: On principles of quantum mechanics, Physica 12, 405 (1946)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. B.-G. Englert, N. Sterpi and H. Walther: Parity states in the one-atom maser, Opt. Commun. 100, 526 (1993)

    Article  ADS  Google Scholar 

  48. W. K. Wootters: A Wigner-function formulation of finite-state quantum mechanics, Ann. Phys. NY 176, 1 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  49. C. Miquel, J. P. Paz and M. Saraceno: Quantum computers in phase space, Phys. Rev. A 65, 062309 (2002)

    Article  ADS  Google Scholar 

  50. A. M. F. Rivas and A. M. Ozorio de Almeida: The Weyl representation on the torus, Ann. Phys. NY 276, 223 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. A. Rivas, M. Saraceno and A. M. Ozorio de Almeida: Quantization of multidimensional cat maps, Nonlinearity 13, 341 (2000)%50

    Google Scholar 

  52. A. Arguelles and T. Dittrich: Wigner function for discrete phase space: Exorcising ghost images, Physica A 356, 72 (2005)

    Article  ADS  Google Scholar 

  53. K. Husimi: Some formal properties of the density matrix, Proc. Phys. Math. Soc. Jpn. 22, 264 (1940)

    MATH  Google Scholar 

  54. K. Takashi: Wigner and Husimi functions in quantum mechanics, J. Phys. Soc. Jpn. 55, 762 (1986)

    Article  ADS  Google Scholar 

  55. A. Wehrl: General properties of entropy, Rev. Mod. Phys. 50, 221 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  56. A. Wehrl: On the relation between classical and quantum-mechanical entropy, Rep. Math. Phys. 16, 353 (1979)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  57. I. Bengtsson and K. Zyczkowski: Geometry of Quantum States (Cambridge University Press, Cambridge 2006)

    Book  MATH  Google Scholar 

  58. F. Mintert and K. Życzkowski: Wehrl entropy, Lieb conjecture, and entanglement monotones, Phys. Rev. A 69, 022317 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  59. P. Leboeuf and A. Voros. In: Quantum Chaos: Between Order and Disorder, ed by G. Casati and B. Chirikov (Cambridge University Press, Cambridge 1995) p. 507

    Google Scholar 

  60. F. Mintert, A. R. R. Carvalho, M. Kus and A. Buchleitner: Measures and dynamics of entangled states, Phys. Rep. 415, 207 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  61. H. B. Bennet, H. J. Bernstein, S. Popescu and B. Schumacher: Concentrating partial entanglement by local operations, Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  62. R. J. Glauber: Photon correlations, Phys. Rev. Lett. 10, 84 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  63. E. C. G. Sudarshan: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams, Phys. Rev. Lett. 10, 277 (1963)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  64. M. A. Cirone: Entanglement correlations, Bell inequalities and the concurrence, Phys. Lett. A 339, 269 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  65. R. M. Angelo, S. A. Vitiello, M. A. M. de Aguiar and K. Furuya: Quantum linear mutual information and classical correlations in globally pure bipartite systems, Physica A 338, 458 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  66. J. S. Bell. In: New Techniques and Ideas in Quantum Measurement Theory (New York Academy of Sciences, New York 1986)

    Google Scholar 

  67. K. Banaszek and K. Wodkiewicz: Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation, Phys. Rev. A 58, 4345 (1988)

    Article  ADS  Google Scholar 

  68. K. Banaszek and K. Wodkiewicz: Testing quantum nonlocality in phase space, Phys. Rev. Lett. 82, 2009 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  69. M. Tegmark and H. S. Shapiro: Decoherence produces coherent states: An explicit proof for harmonic chains, Phys. Rev. E 50, 2538 (1994)

    Article  ADS  Google Scholar 

  70. P. Levy: Theorie de l’Adition des Variables Aleatoires (Gauthier-Villars, Paris 1954)

    Google Scholar 

  71. O. Brodier and A. M. Ozorio de Almeida: Symplectic evolution of Wigner functions in Markovian open systems, Phys. Rev. E 69, 016204 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  72. D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu and H. D. Zeh: Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin 1996)

    MATH  Google Scholar 

  73. G. S. Agarwal: Brownian motion of a quantum oscillator, Phys. Rev. A 4, 739 (1971)

    Article  ADS  Google Scholar 

  74. L. Diosi and C. Kiefer: Exact positivity of the Wigner and P-functions of a Markovian open system, J. Phys. A 35, 2675 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  75. R. P. Feynman and F. L. Vernon: The theory of a general quantum system interacting with a linear dissipative system, Ann. Phys. (NY) 24, 118 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  76. A. O. Caldeira and A. J. Leggett: Quantum tunnelling in a dissipative system, Ann. Phys. (NY) 149, 374 (1983)

    Article  ADS  Google Scholar 

  77. A.O. Caldeira and A.J. Leggett: Ann. Phys. (NY) 153, 445 (1984)

    Google Scholar 

  78. W. H. Louisell: Quantum Properties of Radiation (Wiley, New York 1973)

    Google Scholar 

  79. C. W. Gardiner: Quantum Noise (Springer, Berlin 1991)

    Google Scholar 

  80. U. Weiss: Quantum Dissipative Systems, Series in Modern Condensed Matter Physics, vol 2 (World Scientific, Singapore 1993)

    Google Scholar 

  81. A. Kenfack, J. M. Rost and A. M. Ozorio de Almeida: Optimal representations of quantum states by Gaussians in phase space, J. Phys. B 37, 1645 (2004)

    Article  ADS  Google Scholar 

  82. F. Toscano, A. Kenfack, A. R. R. Carvalho, J. M. Rost and A. M. Ozorio de Almeida: Husimi-Wigner representation of chaotic eigenstates, Proc. R. Soc. Lond. A 464, 1503 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  83. F. A. Berezin and M. A. Shubin. In: Colloquia Mathematica Societatis Janos Bolyiai (North-Holland, Amsterdam 1972) p. 21

    Google Scholar 

  84. M. V. Berry: Semi-classical mechanics in phase space: a study of Wigner’s function, Phil. Trans. Roy. Soc. A 287, 237 (1977)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  85. M. V. Berry. In: Chaos and Quantum Physics; Les Houches LII, ed by M.-J. Giannoni,} A. Voros and J. Zinn-Justin (North Holland, 1991) p. 251

    Google Scholar 

  86. E. J. Moyal: Quantum Mechanics as a Statistical Theory, Proc. Cambridge Phil. Soc. 45, 99 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  87. A. M. Ozorio de Almeida: Semiclassical Matrix Elements, Rev. Bras. Fis. 14, 62 (1984)

    Google Scholar 

  88. A. M. Ozorio de Almeida: The Wigner function for two-dimensional tori: uniform approximation and projections, Ann. Phys. (NY) 145, 100 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  89. A. M. Ozorio de Almeida: Phase space path integral for the Weyl propagator, Proc. R. Soc. Lond. A 439, 139 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  90. P. P. M. Rios and A. M. Ozorio de Almeida: On the propagation of semiclassical Wigner functions, J. Phys. A 35, 2609 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  91. T. A. Osborn and M. F. Kondratieva: Heisenberg evolution WKB and symplectic area phases, J. Phys. A 35, 5279 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  92. A. M. Ozorio de Almeida and O. Brodier: Phase space propagators for quantum operators, Ann. Phys. (NY) 321, 1790 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  93. T. Dittrich, C. Viviescas and L. Sandoval: Semiclassical propagator of the Wigner function, Phys. Rev. Lett. 96, 070403 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  94. A. M. Ozorio de Almeida: Decoherence of semiclassical Wigner functions, J. Phys. A 36, 67 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  95. A. M. Ozorio de Almeida: Pure state condition for the semiclassical Wigner function, Physica A 110, 501 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  96. W. H. Zurek and J. P. Paz: Decoherence, Chaos, and the second law, Phys. Rev. Lett. 72, 2508 (1994)

    Article  ADS  Google Scholar 

  97. A. I. Shnirelman: {Ergodic properties of eigenfunctions}, (Russian) Uspehi. Mat. Nauk. 29, 181 (1974)

    Google Scholar 

  98. Y. Colin de Verdière:Ergodicit et fonctions propres du laplacien, Comm. Math. Phys. 102, 497 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  99. S. Zelditch: Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55, 919 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  100. M. V. Berry: Fringes decorating anticaustics in ergodic wavefunctions, Proc. R. Soc. A 424, 279 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Almeida, A.O.d. (2009). Entanglement in Phase Space. In: Buchleitner, A., Viviescas, C., Tiersch, M. (eds) Entanglement and Decoherence. Lecture Notes in Physics, vol 768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88169-8_4

Download citation

Publish with us

Policies and ethics