Skip to main content

An Investigation into Neural Networks for the Detection of Exudates in Retinal Images

  • Conference paper
Applications of Soft Computing

Part of the book series: Advances in Soft Computing ((AINSC,volume 52))

Abstract

We present an approach of automatically detecting exudates in retinal images using neural networks. Exudates are one of the early indicators of diabetic retinopathy which is known as one of the leading causes for blindness. A neural network is trained to classify whether small image windows are part of exudate areas or not. Furthermore, it is shown that a pre-processing step based on histogram specification in order to deal with varying lighting conditions greatly improves the recognition performance. Application of principal component analysis is used for dimensionality reduction and speed-up of the system. Experimental results were obtained on an image data set with known exudate locations and showed good classification performance with a sensitivity of 94.78% and a specificity of 94.29%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aiello, L., Callerano, J., Gardner, T., King, D., Blankenship, G., Ferris, F., Klein, R.: Diabetic retinopathy. Diabetes Care 21, 143–156 (1998)

    Google Scholar 

  2. Finlayson, G., Hordley, S., Schaefer, G., Tian, G.Y.: Illuminant and device invariant colour using histogram equalisation. Pattern Recognition 38, 179–190 (2005)

    Article  Google Scholar 

  3. Gardner, G.G., Keating, D., Williamson, T.H., Elliott, A.T.: Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. British Journal of Ophthalmology 80(11), 940–944 (1996)

    Article  Google Scholar 

  4. Goatman, K.A., Whitwam, A.D., Manivannan, A., Olson, J.A., Sharp, P.F.: Colour normalisation of retinal images. In: Medical Image Understanding and Analysis (2003)

    Google Scholar 

  5. Gonzales, R.C., Woods, R.E.: Digital Image Processing. Addison Wesley, Reading (1992)

    Google Scholar 

  6. Nabney, I.T.: Netlab: Algorithms for Pattern Recognition. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  7. Osareh, A., Mirmehdi, M., Thomas, B., Markham, R.: Automated identification of diabetic retinal exudates in digital colour images. British Journal of Ophthalmology 87(10), 1220–1223 (2003)

    Article  Google Scholar 

  8. Patton, N., Aslam, T.M., MacGillvray, T., Deary, I.J., Dhillon, B., Eikelboom, R.H., Yogesam, K., Constable, I.J.: Retinal image analysis: concepts, applications and potential. Progress in Retinal and Eye Research 25(1), 99–127 (2006)

    Article  Google Scholar 

  9. Sinthanayothin, C., Boyce, J.F., Williamson, T.H., Cook, H.L., Mensah, E., Lal, S., Usher, D.: Automated detection of diabetic retinopathy on digital fundus images. Diabetic Medicine 19(2), 105–112 (2002)

    Article  Google Scholar 

  10. Walter, T., Klein, J., Massin, P., Erginay, A.: A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Trans. Medical Imaging 21(10), 1236–1243 (2002)

    Article  Google Scholar 

  11. Zweig, M.H., Campbell, G.: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry 39(4), 561–577 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schaefer, G., Leung, E. (2009). An Investigation into Neural Networks for the Detection of Exudates in Retinal Images. In: Avineri, E., Köppen, M., Dahal, K., Sunitiyoso, Y., Roy, R. (eds) Applications of Soft Computing. Advances in Soft Computing, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88079-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88079-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88078-3

  • Online ISBN: 978-3-540-88079-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics