Advertisement

Detection and Reification of Emerging Dynamical Ecosystems from Interaction Networks

  • Guillaume Prévost
  • Cyrille Bertelle
Part of the Understanding Complex Systems book series (UCS)

Summary

In this paper, we present an hybrid ecosystem modeling based on emerging computation from interaction networks. Initially based on an individualbased modeling (IBM) simulation, we propose an automatic computation to detect predator-preys systems. After their detection, these systems are replaced by a differential system during the simulation. In this way, we can change the description level and improve both the computation time and the whole system analysis by detecting some emergent organizations. The description modification between IBM representation to differential one needs to identify the global coefficients of these differential equations. Due to the complexity of relations between these two kinds of representations, a genetic algorithm is proposed to solve this identification.

Key words

Complex systems ecosystems interaction networks emerging systems non-linear differential systems genetic algorithms ontology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [DeAngelis et al. 1992]
    DeAngelis, D.; and L. Gross, editors (1992) Individual-based models and approches in ecology. Chapman and Hall.Google Scholar
  2. [Baude et al. 2000]
    Baude, F.; Caromel, D.; Huet, F. and J. Vayssier (2000) Communicating mobile active object in Java. in Proceeding of HPCN Europe.Google Scholar
  3. [Von Bertalanffy 1968]
    Von Bertalanffy, L.. (1968) General system theory foundations development applications. George Brazille Inc., New York.Google Scholar
  4. [Cardon 2004]
    Cardon, A. (2004)Modéliser et concevoir une machine pensante. Vuibert - collection Automates Intelligents.Google Scholar
  5. [Cardon 2005]
    Cardon, A. (2005) La complexité organisée, systèmes adaptatifs et champ organisationnel. Hermès-Lavoisier.Google Scholar
  6. [Frontier 1999]
    Frontier, S. (1999) Les écosystèmes. PUF.Google Scholar
  7. [Grim 1999]
    Grim, V. (1999) Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the furture. Ecological Modelling, (115):129–148.CrossRefGoogle Scholar
  8. [Gruber 1991]
    Gruber, T. (1991) The role of common ontology in achieving sharable, reusable knowledge bases. in proceeding of KR’91, Principles of Knowledge Representation and Reasoning: second international conference.Google Scholar
  9. [Koestler et al. 1969]
    Koestler, A.; and J. Smythies (1969) Beyond reductionism. Hutchinson.Google Scholar
  10. [Le Moigne 1994]
    Le Moigne J.-L. (1994) Modélisation des systèmes complexes. Dunod.Google Scholar
  11. [Prévost 2005]
    Prévost, G. (2005) Modélisation d’écosystème multi-niveaux par des approches mixtes. PhD thesis, University of Le Havre.Google Scholar
  12. [Protégé 2008]
    Protégé Ontology Editor and Knowledge Acquisition System 2008) http://protege.stanford.edu.
  13. [Scheffer et al. 1995]
    Scheffer, M.; Baveco, J.M.; DeAngelis, D.L.; Rose, K.A. and E.H. van Nes (1995) Super-individuals a simple solution for modelling large populations on individual basis. Ecological Modelling 80, 161-170.CrossRefGoogle Scholar
  14. [Tansley 1935]
    Tansley, A. (1935)The use and abuse of vegetational concepts and terms.Ecology, 16(3): 299.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Guillaume Prévost
    • 1
  • Cyrille Bertelle
    • 1
  1. 1.LITIS University of Le HavreFrance

Personalised recommendations