Skip to main content

Dynamics and Control of Surface Exploration Robots on Asteroids

  • Conference paper
Optimization and Cooperative Control Strategies

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 381))

Abstract

Over the past decade, a few solo-robotic landing missions have been sent to asteroids at modest cost, providing a basic understanding of their environment. These missions can diversify and be improved upon by having multiple landers which also contribute to increasing the overall mission reliability. Since the gravity on an asteroid is low, a wheeled vehicle would likely bounce back from hitting the surface, and be difficult to control. Instead we consider hopping robots. We develop a first order model of the dynamics of hoppers to estimate the total time and distance covered from an initial bounce to a stop due to friction and restitution coefficients. From this dynamical model, hoppers could easily investigate the surface by controlling their initial velocity; one would just need to estimate to desired distance to be covered. To extend the single hopper control law to collaborative landers, we apply sliding-mode control to discrete formation control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barfoot, T.D., Clark, C.M.: Motion planning for formations of mobile robots. Robotics and Autonomous Systems 46, 65–78 (2004)

    Article  Google Scholar 

  2. Beard, R., Lawton, J., Hadaegh, F.: A coordination architecture for spacecraft formation control. IEEE Transactions on Control Systems Technology 9(6), 777–790 (2001)

    Article  Google Scholar 

  3. Danby, J.M.A.: Fundamentals of Celestial Mechanics, 2nd edn. Willmann-Bell, VA (1992)

    Google Scholar 

  4. Flannery, B.P., Press, W.H., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipies in C, The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  5. Greenwood, D.T.: Principles of Dynamics, 2nd edn. Prentice-Hall, New York (1988)

    Google Scholar 

  6. Guibout, V., Scheeres, D.J.: Stability of surface motion on a rotating ellipsoid. Celestial Mechanics and Dynamical Astronomy 87, 263–290 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hedrick, J., Tomizuka, M., Varaiya, P.: Control issues in automated highway systems

    Google Scholar 

  8. Kawaguchi, A.F.J., Kuninaka, H., Uesugi, T.: Muses-c, its launch and early orbit operation. Acta Astronautica 59, 669–678 (2006)

    Article  Google Scholar 

  9. Kaula, W.M.: Theory of Satellite Geodesy. Blaisdell Publishing Company, Waltham (1966)

    Google Scholar 

  10. Lee, T., Leok, M., McClamroch, N.H.: Lie group variational integrators for the full body problem in orbital mechanics. Celestial Mechanics and Dynamical Astronomy 98(2), 121–144 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Margot, J.-L., Nolan, M.C., Benner, L.A.M., Ostro, S.J., Jurgens, R.F., Giorgini, J.D., Slade, M.A., Campbell, D.B.: Binary asteroids in the near-earth object population. Science 296(5572), 1445–1448 (2002)

    Article  Google Scholar 

  12. Moulton, F.R.: An Introduction to Celestial Mechanics. Dover (1970)

    Google Scholar 

  13. Olfati-Saber, R., Murray, R.: Graph rigidity and distributed formation stabilization of multi-vehicle systems 3, 2965–2971 (2002)

    Google Scholar 

  14. Pant, A., Seiler, P., Hedrick, K.: Mesh stability of look-ahead interconnected systems. IEEE Transactions on Automatic Control 47(2), 403–407 (2002)

    Article  MathSciNet  Google Scholar 

  15. Scheeres, D.J.: Stability of relative equilibria in the full two-body problem. Annals of the New York Academy of Sciences 1017, 81–94 (2004)

    Article  Google Scholar 

  16. Scheeres, D.J.: Relative equilibria for general gravity fields in the sphere-restricted full 2-body problem. Celestial Mechanics and Dynamical Astronomy 94(3), 317–349 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Scheeres, D.J., Augenstein, S.: Spacecraft Motion about Binary Asteroids. Astrodynamics 2003, Part II, Advances in the Astronautical Sciences Series, vol. 116, pp. 991–1010 (2003)

    Google Scholar 

  18. Scheeres, D.J., Fahnestock, E.G.: Simulation of the full two rigid body problem using polyhedral mutual potential and potential derivatives approach. Celestial Mechanics and Dynamical Astronomy 96(3-4), 317–339 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shiga, D., (January 22, 2007), http://space.newscientist.com/article/dn11001 , NewScientist.com

  20. Swaroop, D., Hedrick, J.K.: String stability of interconnected systems. IEEE Transactions on Automatic Control 41(3), 349–357 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tillerson, M., Breger, L., How, J.: Distributed coordination and control of formation flying spacecraft 2, 1740–1745 (2003)

    Google Scholar 

  22. Yoshimitsu, T., Kubota, T., Nakatani, I., Adachi, T., Saito, H.: Micro-hopping robot for asteroid exploration. Acta Astronautica 52, 441–446 (2003)

    Article  Google Scholar 

  23. Zheng, Z., Girard, A.: Leaderless formation control using dynamic extension and sliding control. In: IFAC World Congress (2008)

    Google Scholar 

  24. Zohdi, T.: Computational design of swarms. International Journal for Numerical Methods in Engineering 57, 2205–2219 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bellerose, J., Girard, A., Scheeres, D.J. (2009). Dynamics and Control of Surface Exploration Robots on Asteroids. In: Hirsch, M.J., Commander, C.W., Pardalos, P.M., Murphey, R. (eds) Optimization and Cooperative Control Strategies. Lecture Notes in Control and Information Sciences, vol 381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88063-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88063-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88062-2

  • Online ISBN: 978-3-540-88063-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics