Skip to main content

Optimal Cooperative Thermalling of Unmanned Aerial Vehicles

  • Conference paper
Optimization and Cooperative Control Strategies

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 381))

Abstract

Motivated by cooperative exploration missions, this chapter considers the use of thermals to increase the altitudes of multiple unmanned aerial vehicles (UAVs). The mission of the UAVs is to travel through a given area and identify updrafts. The UAVs communicate to each other the location of each rise or fall in their altitude to form a map of the area. This imperfect map can then be used to identify areas of interest that may be potential thermals. The subsequent problem of utilizing these thermals is addressed from the viewpoint of information collection based on Shannon’s channel capacity equation. This method yields paths that achieve the intended result, to elevate the aircraft to higher altitudes, while benefiting from cooperation. Several illustrations are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, M.J.: Updraft model for development of autonomous soaring uninhabited air vehicles. In: Proceedings of the ICAE 2003 Conference, ICAE (1996)

    Google Scholar 

  2. Allen, M.J.: Autonomous soaring for improved endurance of a small uninhabited air vehicle. In: Proceedings of the 43rd Aerospace Sciences Meeting, AIAA (2005)

    Google Scholar 

  3. Allen, M.J.: Guidance and control of an autonomous soaring UAV. Technical Report 214611 (February 2007)

    Google Scholar 

  4. Barraquand, J., Latombe, J.C.: Robot motion planning: A distributed representation approach. International Journal of Robotics Research 10, 628–649 (1991)

    Article  Google Scholar 

  5. Blakeslee, R.J., Croskey, C.L., Desch, M.D., Farrell, W.M., Goldberg, R.A., Houser, J.G., Kim, H.S., Mach, D.M., Mitchell, J.D., Stoneburner, J.C.: The altus cumulus electrification study (aces): A UAV-based science demonstration. In: Proceedings of the ICAE 2003 Conference, ICAE (1996)

    Google Scholar 

  6. Bryson, B., Ho, Y.: Applied Optimal Control. Hemisphere Publishing Corporation (1975)

    Google Scholar 

  7. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. American Journal of Mathematics 79, 497–517 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  8. Julier, S.J., Uhlmann, J.K.: Real time distributed map building in large environments. In: International Society for Optical Engineering Proceedings (2000)

    Google Scholar 

  9. Kavraki, L.E., Latombe, P., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation 12, 566–580 (1996)

    Article  Google Scholar 

  10. Klesh, A., Girard, A., Kabamba, P.: Real-time path planning for time-optimal exploration. In: Proceedings of the 2008 AIAA GNC Conference, AIAA (accepted, August 2008)

    Google Scholar 

  11. Klesh, A., Kabamba, P., Girard, A.: Path planning for cooperative time-optimal information collection. In: Proceedings of the 2008 IEEE American Control Conference, ACC (accepted, June 2008)

    Google Scholar 

  12. Klesh, A., Kabamba, P., Girard, A.: A path planning framework for autonomous exploration. In: Proceedings of the 2008 IEEE Conference on Decision and Control, CDC (submitted, December 2008)

    Google Scholar 

  13. Koditschek, D.E.: Exact robot navigation by means of potential functions: Some topological considerations. In: Proceedings of the 1987 International Conference on Robotics and Automation. IEEE, Los Alamitos (1987)

    Google Scholar 

  14. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  15. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. In: Proceedings of the IEEE International Conference on Robotics and Automation. IEEE, Los Alamitos (1999)

    Google Scholar 

  16. Lozano-Perez, T.: Automatic planning of manipulator transfer movements. IEEE Transactions on Systems, Man and Cybernetics 11, 681–698 (1981)

    Article  Google Scholar 

  17. Lozano-Perez, T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Communications of the ACM 22, 681–698 (1979)

    Article  Google Scholar 

  18. Mahon, I., Williams, S.: Three-dimensional robotic mapping (2003)

    Google Scholar 

  19. Metzger, D.E., Hedrick, J.K.: Optimal flight paths for soaring flight. In: Proceedings of the 2nd International Symposium on the Technology and Science of Low Speed and Motorless Flight, AIAA (1974)

    Google Scholar 

  20. Office of the Secretary of Defense. Unmanned aircraft systems roadmap (2005-2030)

    Google Scholar 

  21. Savla, K., Bullo, F., Frazzoli, E.: On Traveling Salesperson Problem for Dubins’ Vehicle: Stochastic and Dynamic Environments. In: Proceedings of the 44th IEEE Conference on Decision and Control and the European Control Conference 2005. IEEE, Los Alamitos (2005)

    Google Scholar 

  22. Schwartz, J.T., Sharir, M.: On the piano mover’s problem: I. The case of a two-dimensional rigid polygonal body moving admist polygonal barriers. Communications on Pure and Applied Mathematics 36, 345–398 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  23. Schwartz, J.T., Sharir, M.: On the Piano Mover’s Problem: II. General Techniques for Computing Topological Properties of Real Algebraic Manifolds. Advances in Applied Mathematics 4, 51–96 (1983)

    Article  MathSciNet  Google Scholar 

  24. Schwartz, J.T., Sharir, M.: On the piano mover’s problem: III. Coordinating the motion of several. independent bodies: The special case of circular bodies. Planning, Geometry, and Complexity of Robot Motion (1987)

    Google Scholar 

  25. Soueres, P., Laumond, J.P.: Shortest paths synthesis for a car-like robot. IEEE Transactions on Automatic Control, 672–688 (1996)

    Google Scholar 

  26. Speranzon, A., Fischione, C., Johansson, K.H.: Distributed and collaborative estimation over wireles sensor networks. In: 45th IEEE Conference on Decision and Control (2006)

    Google Scholar 

  27. Svestka, P., Overmars, M.: Coordinated motion planning for multiple car-like robots using probabilistic roadmaps. In: Proceedings of the IEEE International Conference on Robotics and Automation. IEEE, Los Alamitos (1995)

    Google Scholar 

  28. Udupa, S.: Collision detection and avoidance in computer controlled manipulators (1977)

    Google Scholar 

  29. Zhao, Y.J.: Energy-Efficient Trajectories of Unmanned Aerial Vehicles Flying through Thermals. Journal of Aerospace Engineering 18, 84 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klesh, A.T., Kabamba, P.T., Girard, A.R. (2009). Optimal Cooperative Thermalling of Unmanned Aerial Vehicles. In: Hirsch, M.J., Commander, C.W., Pardalos, P.M., Murphey, R. (eds) Optimization and Cooperative Control Strategies. Lecture Notes in Control and Information Sciences, vol 381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88063-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88063-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88062-2

  • Online ISBN: 978-3-540-88063-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics