Skip to main content

Multi-Objective Robust Optimization Assisted by Response Surface Approximation and Visual Data-Mining

  • Chapter
Multi-Objective Memetic Algorithms

Part of the book series: Studies in Computational Intelligence ((SCI,volume 171))

  • 1310 Accesses

Abstract

A new approach for multi-objective robust design optimization was proposed and applied to a real-world design problem with a large number of objective functions. The present approach is assisted by response surface approximation and visual data-mining, and resulted in two major gains regarding computational time and data interpretation. The Kriging model for response surface approximation can markedly reduce the computational time for predictions of robustness. In addition, the use of self-organizing maps as a data- mining technique allows visualization of complicated design information between optimality and robustness in a comprehensible two- dimensional form. Therefore, the extraction and interpretation of trade-off relations between optimality and robustness of design, and also the location of sweet spots in the design space, can be performed in a comprehensive manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gunawan, S., Azarm, S.: Multi-objective robust optimization using a sensitivity region concept. Structural Multidisciplinary Optimization 29, 50–60 (2005)

    Article  Google Scholar 

  2. Li, M., Azarm, S., Aute, V.: A multi-objective genetic algorithm for robust design optimization. In: Proceedings of the 2005 Genetic and Evolutionary Computation Conference, pp. 771–778. ACM Press, New York (2005)

    Chapter  Google Scholar 

  3. Deb, K., Gupta, H.: Searching for robust pareto-optimal solutions in multi-objective optimization. In: Proceedings of the 3rd International Conference on Evolutionary Multi-Criterion Optimization, pp. 150–164. Springer, Heidelberg (2005)

    Google Scholar 

  4. Ong, Y.-S., Nair, P.B., Lum, K.Y.: Max–min surrogate-assisted evolutionary algorithm for robust design. IEEE Transactions on Evolutionary Computation 10, 392–404 (2006)

    Article  Google Scholar 

  5. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Ltd., Chichester (2001)

    MATH  Google Scholar 

  6. Shimoyama, K., Oyama, A., Fujii, K.: A new efficient and useful robust optimization approach – design for multi-objective six sigma. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 950–957. IEEE Press, Piscataway (2005)

    Chapter  Google Scholar 

  7. Shimoyama, K., Oyama, A., Fujii, K.: Multi-objective six sigma approach applied to robust airfoil design for Mars airplane. AIAA Paper 2007–1966 (April 2007)

    Google Scholar 

  8. Ray, T.: Constrained robust optimal design using a multiobjective evolutionary algorithm. In: Proceedings of the 2002 IEEE Congress on Evolutionary Computation, vol. 1, pp. 419–424. IEEE Press, Piscataway (2002)

    Google Scholar 

  9. Jin, Y., Sendhoff, B.: Trade-off between performance and robustness: An evolutionary multiobjective approach. In: Proceedings of the 2nd International Conference on Evolutionary Multi-Criterion Optimization, pp. 237–251. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Engineous Software, Inc., iSIGHT Reference Guide Version 7.1, pp. 220–233. Engineous Software, Inc. (2002)

    Google Scholar 

  11. Myers, R.H., Montgomery, D.C.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley & Sons, Ltd., New York (1995)

    Google Scholar 

  12. Chen, W., Allen, J.K., Schrage, D.P., Mistree, F.: Statistical experimentation methods for achieving affordable concurrent systems design. AIAA Journal 33(5), 409–435 (1997)

    Google Scholar 

  13. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Statistical Science 4(4), 409–435 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box function. Journal of Global Optimization 13, 455–492 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995)

    Google Scholar 

  16. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  17. Saliby, E.: Descriptive sampling: A better approach to Monte Carlo simulation. Journal of the Operational Research Society 41(12), 1133–1142 (1990)

    Article  Google Scholar 

  18. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: Proceedings of the 5th International Conference on Genetic Algorithms, pp. 416–423. Morgan Kaufmann Publishers, Inc., San Mateo (1993)

    Google Scholar 

  19. Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: Proceedings of the 2nd International Conference on Genetic Algorithms, pp. 41–49. Morgan Kaufmann Publishers, San Mateo (1987)

    Google Scholar 

  20. Eshelman, L.J.: The CHC adaptive search algorithm: How to have safe when engaging in nontraditional genetic recombination. In: Foundations of Genetic Algorithms, pp. 265–283. Morgan Kaufmann Publishers, San Mateo (1991)

    Google Scholar 

  21. Tsutsui, S., Fujimoto, Y.: Forking genetic algorithms with blocking and shrinking modes (fGA). In: Proceedings of the 5th International Conference on Genetic Algorithms, pp. 206–213. Morgan Kaufmann Publishers, San Mateo (1993)

    Google Scholar 

  22. Eudaptics Software GmbH (2007), http://www.eudaptics.com/somine/ (cited January 10, 2007)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shimoyama, K., Lim, J.N., Jeong, S., Obayashi, S., Koishi, M. (2009). Multi-Objective Robust Optimization Assisted by Response Surface Approximation and Visual Data-Mining. In: Goh, CK., Ong, YS., Tan, K.C. (eds) Multi-Objective Memetic Algorithms. Studies in Computational Intelligence, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88051-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88051-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88050-9

  • Online ISBN: 978-3-540-88051-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics