Skip to main content

Evolutionary Multi-Multi-Objective Optimization - EMMOO

  • Chapter
Multi-Objective Memetic Algorithms

Part of the book series: Studies in Computational Intelligence ((SCI,volume 171))

  • 1307 Accesses

Abstract

In this chapter the recently introduced multi-Multi-ObjectiveOptimization Problem (m- MOOP) is described and a new evolutionary approach is suggested for its solution. The m-MOOP is a problem, which may be defined as a result of a demand to find solutions for several different multi-objective problems that are to share components. It is argued and explained here, why posing the m-MOOP as a common MOOP, is not an option and other approaches should be considered. The previously introduced Evolutionary Multi-Multi Objective Optimization (EMMOO) algorithms, which solve m-MOOPs, including the sequential, and the simultaneous one, are compared here with a new approach. The comparison is based on the loss of optimality measure.

In the chapter another extension to the suggested EMMOOs is considered and posed as a challenge. It is associated with a local search, which should be most important to the problem in hand both for improving results as well as for guarantying robustness. The chapter concludes with a discussion on the generic nature of the m-MOOP and on some possible extensions of the suggested EMMOOs to other fields of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fellini, R., Kokkolaras, M., Panos, P.Y., Perez-Duarte.: A Platform Selection Under Performance Loss Constraints in Optimal Design of Product Families. In: Proceedings of 2002 Design Engineering Technical Conferences and Computer and Information in Engineering Conference, Montreal, Canada, September 29-October 2 (2002)

    Google Scholar 

  2. Robertson, D., Ulrich, K.: Planning Product Platforms. Sloan Management Review 39(4), 19–31 (1998)

    Google Scholar 

  3. Lehnerd, A.P.: Revitalizing the Manufacture and Design of Mature Global Products. In: Guile, B.R., Brooks, H. (eds.) Technology and Global Industry: Companies and Nations in the World Economy, pp. 49–64. National Academy Press, Washington (1987)

    Google Scholar 

  4. Aboulafia, R.: Airbus Pulls Closer to Boeing. Aerospace America 38(4), 16–18 (2000)

    Google Scholar 

  5. Simpson, T.W.: Product Platform design and optimization: status and promise. In: Proceedings of 2003 Design Engineering Technical conferences and Computers and Information in Engineering Conference, Chicago, Illinois USA (2003)

    Google Scholar 

  6. Siddique, Z., Rosen, D.W., Wang, N.: On the Applicability of Product Variety Design Concepts to Automotive Platform Commonality. In: ASME Design Engineering Technical Conferences, Atlanta, GA, ASME, DETC/DTM-5661 (1998)

    Google Scholar 

  7. Chakravarty, A.K., Balakrishnan, N.: Achieving product variety though optimal choice of module variations. IIE Transactions 33, 587–598 (2001)

    Google Scholar 

  8. Gonzalez-Zugasti, J.P., Otto, K.N., Baker, J.D.: A Method for Architecting Product Platforms. Research in Engineering Design 12, 61–72 (2000)

    Article  Google Scholar 

  9. Fisher, M.L., Ramdas, K., Ulrich, K.T.: Component Sharing in the Management of Product Variety: A Study of Automotive Braking Systems. Management Science 45(3), 297–315 (1999)

    Article  Google Scholar 

  10. Rai, R., Allada, V.: Modular product family design: agent-based Pareto-optimization and quality loss function-based post-optimal analysis. International Journal of Production Research 41(17) (2003)

    Google Scholar 

  11. Simpson, T.W., D´Souza, B.S.: Assessing variable levels of platform commonality within a product family using a multiobjective genetic algorithm. Journal of Concurrent Engineering: Research and Applications 12(2), 119–129 (2004)

    Article  Google Scholar 

  12. Dasgupta, D., McGregor, D.R.: A more biologically motivated genetic algorithm: The model and some results. Cybernetics and Systems: An International Journal 25(3), 447–469 (1994)

    Article  Google Scholar 

  13. Avigad, G.: Multi-multi objective optimization problem and its solution by a multi objective evolutionary algorithm. In: The proceedings of EMO 2007, Japan (2007)

    Google Scholar 

  14. Avigad, G.: Solving the multi-multi objective optimization problem by a simultaneous MOEA. In: The 2007 IEEE congress on evolutionary computation (2007)

    Google Scholar 

  15. Ponweiser, W., Vincze, M.: The multiple multi objective problem – definition, solution and evaluation. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 877–892. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  17. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  18. Fellini, R., Kokkolaras, M., Papalambros, P.Y., Perez-Duarte, A.: Platform Selection Under Performance Loss Constraints in Optimal Design of Product Families. In: Proceedings of 2002 Design Engineering Technical Conferences and Computer and Information in Engineering Conference Montreal, Canada, September 29-October 2 (2002)

    Google Scholar 

  19. Nelson, S.A., Parkinson II, M.B., Papalambros, P.Y.: Multicriteria Optimization in Product Platform Design. ASME Journal of Mechanical Design 123(2), 199–204 (2001)

    Article  Google Scholar 

  20. Bosman, P.A.N., Thierens, D.: The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(2), 174–188 (2003)

    Article  Google Scholar 

  21. Watson, R.A., Pollack: Biosystems 69(2-3), 187–209 (May 2003) (special issue on Evolvability)

    Google Scholar 

  22. Werth, C.R., Guttman, S.I., Eshbaugh, W.H.: Recurring origins of allopolyploid species in Asplenium. Science 228, 731–733 (1985)

    Article  Google Scholar 

  23. Parmee, I.C.: Evolutionary and adaptive strategies for efficient search across whole system engineering design hierarchies. Artificial Intelligence for Engineering Design, Analysis and Manufacturing Journal 12, 431–445 (1998)

    Google Scholar 

  24. Moshaiov, A.: Multi-objective design in nature and in the artificial. In: Meguid, S.A., Gomes, J.F.S. (eds.) Proceedings of the 5th International Conference on Mechanics and Materials in Design (July 2006)

    Google Scholar 

  25. Avigad, G., Moshaiov, A., Brauner, N.: Concept-based interactive brainstorming in engineering design. Journal of Advanced Computational Intelligence and Intelligent Informatics 8(5), 1–6 (2004)

    Google Scholar 

  26. Avigad, G., Moshaiov, A., Brauner, N.: MOEA-based approach to delayed decisions for robust conceptual design. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005, vol. 3449, pp. 584–589. Springer, Heidelberg (2005)

    Google Scholar 

  27. Jin, Y., Olhofer, M., Sendhof, B.: A Framework for Evolutionary Optimization with Approximate Fitness Functions. IEEE Transactions on Evolutionary Computations 6, 481–494 (2002)

    Article  Google Scholar 

  28. Moshaiov, A., Avigad, G.: Interactive concept-based IEC for multi-objective search with robustness to human preference uncertainty. In: Proceedings of the, IEEE congress on evolutionary computation, Vancouver, Canada (2006)

    Google Scholar 

  29. Weyuker, E.J.: Testing Component-Based Software: A Cautionary Tale. IEEE Software 15(5), 54–59 (1998)

    Article  Google Scholar 

  30. Avigad, G., Deb, K.: The Sequential Optimization-Constraint Multi-objective Problem and its Applications for Robust Planning of Robot Paths. In: The proceedings of the 2007 IEEE congress on evolutionary computation Singapore (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Avigad, G. (2009). Evolutionary Multi-Multi-Objective Optimization - EMMOO. In: Goh, CK., Ong, YS., Tan, K.C. (eds) Multi-Objective Memetic Algorithms. Studies in Computational Intelligence, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88051-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88051-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88050-9

  • Online ISBN: 978-3-540-88051-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics