Using OBDDs for Efficient Query Evaluation on Probabilistic Databases

  • Dan Olteanu
  • Jiewen Huang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5291)


We consider the problem of query evaluation for tuple independent probabilistic databases and Boolean conjunctive queries with inequalities but without self-joins. We approach this problem as a construction problem for ordered binary decision diagrams (OBDDs): Given a query q and a probabilistic database D, we construct in polynomial time an OBDD such that the probability of q(D) can be computed linearly in the size of that OBDD. This approach is applicable to a large class of queries, including the hierarchical queries, i.e., the Boolean conjunctive queries without self-joins that admit PTIME evaluation on any tuple-independent probabilistic database, hierarchical queries extended with inequalities, and non-hierarchical queries on restricted databases.


Variable Order Tree Representation Truth Assignment Query Evaluation Boolean Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antova, L., Jansen, T., Koch, C., Olteanu, D.: Fast and Simple Relational Processing of Uncertain Data. In: Proc. ICDE (2008)Google Scholar
  2. 2.
    Benjelloun, O., Sarma, A.D., Halevy, A., Widom, J.: ULDBs: Databases with Uncertainty and Lineage. In: Proc. VLDB (2006)Google Scholar
  3. 3.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Computers 35(8), 677–691 (1986)zbMATHCrossRefGoogle Scholar
  4. 4.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond. Information and Computation 98(2) (1992)Google Scholar
  5. 5.
    Dalvi, N., Suciu, D.: “Efficient query evaluation on probabilistic databases”. VLDB Journal 16(4), 523–544 (2007)CrossRefGoogle Scholar
  6. 6.
    Dalvi, N., Suciu, D.: Management of Probabilistic Data: Foundations and Challenges. In: Proc. PODS (2007)Google Scholar
  7. 7.
    Dalvi, N., Suciu, D.: The Dichotomy of Conjunctive Queries on Probabilistic Structures. In: Proc. PODS (2007)Google Scholar
  8. 8.
    Darwiche, A.: Decomposable negation normal form. Journal of the ACM 48(4) (2001)Google Scholar
  9. 9.
    Ferrara, A., Pan, G., Vardi, M.Y.: Treewidth in verification: Local vs. global. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Green, T.J., Tannen, V.: Models for Incomplete and Probabilistic Information. In: Proc. IIDB (2006)Google Scholar
  11. 11.
    Hayase, K., Imai, H.: OBDDs of a monotone function and of its prime implicants. In: Algorithms and Computation (1996)Google Scholar
  12. 12.
    Huang, J., Darwiche, A.: Using DPLL for efficient OBDD construction. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Imielinski, T., Lipski, W.: Incomplete information in relational databases. Journal of ACM 31(4), 761–791 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Koch, C., Olteanu, D.: Conditioning Probabilistic Databases. In: JDMR (formerly Proc. VLDB), p. 1 (2008)Google Scholar
  15. 15.
    Lam, M.S., Whaley, J., Livshits, V.B., Martin, M.C., Avots, D., Carbin, M., Unkel, C.: Context-sensitive program analysis as database queries. In: PODS (2005)Google Scholar
  16. 16.
    Meinel, C., Theobald, T.: Algorithms and Data Structures in VLSI Design. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  17. 17.
    Olteanu, D., Huang, J., Koch, C.: Lazy versus Eager Query Plans for Tuple-Independent Probabilistic Databases. Technical report, Oxford University (2008)Google Scholar
  18. 18.
    Raedt, L.D., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its application in link discovery. In: Proc. IJCAI (2007)Google Scholar
  19. 19.
    Robertson, N., Seymour, P.: Graph minors. ii. algorithmic aspects of treewidth. J. of Algorithms 7, 309–322 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Sen, P., Deshpande, A.: Representing and Querying Correlated Tuples in Probabilistic Databases. In: Proc. ICDE (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dan Olteanu
    • 1
  • Jiewen Huang
    • 1
  1. 1.Oxford University Computing LaboratoryUK

Personalised recommendations