Advertisement

Gene Team Tree: A Compact Representation of All Gene Teams

  • Melvin Zhang
  • Hon Wai Leong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5267)

Abstract

The identification of conserved gene clusters is an important step towards understanding genome evolution and predicting the function of genes. Gene team is a model for conserved gene clusters that takes into account the position of genes on a genome. Existing algorithms for finding gene teams require the user to specify the maximum distance between adjacent genes in a team. However, determining suitable values for this parameter, δ, is non-trivial. Instead of trying to determine a single best value, we propose constructing the gene team tree (GTT), which is a compact representation of all gene teams for every possible value of δ. Our algorithm for computing the GTT extends existing gene team mining algorithms without increasing their time complexity. We compute the GTT for E. coli K-12 and B. subtilis and show that E. coli K-12 operons are recovered at different values of δ. We also describe how to compute the GTT for multi-chromosomal genomes and illustrate using the GTT for the human and mouse genomes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Béal, M.-P., Bergeron, A., Corteel, S., Raffinot, M.: An algorithmic view of gene teams. Theor. Comput. Sci. 320(2-3), 395–418 (2004)zbMATHCrossRefGoogle Scholar
  2. Ermolaeva, M.D., White, O., Salzberg, S.L.: Prediction of operons in microbial genomes. Nucleic Acids Res. 29(5), 1216–1221 (2001)CrossRefGoogle Scholar
  3. Fu, Z., Chen, X., Vacic, V., Nan, P., Zhong, Y., Jiang, T.: Msoar: A high-throughput ortholog assignment system based on genome rearrangement. Journal of Computational Biology 14(9), 1160–1175 (2007)CrossRefMathSciNetGoogle Scholar
  4. Gama-Castro, S., Jimnez-Jacinto, V., Peralta-Gil, M., Santos-Zavaleta, A., Pealoza-Spinola, M.I., Contreras-Moreira, B., Segura-Salazar, J., Muiz-Rascado, L., Martnez-Flores, I., Salgado, H., Bonavides-Martnez, C., Abreu-Goodger, C., Rodrguez-Penagos, C., Miranda-Ros, J., Morett, E., Merino, E., Huerta, A.M., Trevio-Quintanilla, L., Collado-Vides, J.: Regulondb (version 6.0): gene regulation model of escherichia coli k-12 beyond transcription, active (experimental) annotated promoters and textpresso navigation. Nucleic Acids Res. 36, 120–124 (2008)CrossRefGoogle Scholar
  5. He, X., Goldwasser, M.H.: Identifying conserved gene clusters in the presence of homology families. Journal of Computational Biology 12(6), 638–656 (2005)CrossRefGoogle Scholar
  6. Hoberman, R., Durand, D.: The incompatible desiderata of gene cluster properties. In: McLysaght and Huson, pp. 73–87 (2005)ISBN 3-540-28932-1Google Scholar
  7. Hoberman, R., Sankoff, D., Durand, D.: The statistical analysis of spatially clustered genes under the maximum gap criterion. Journal of Computational Biology 12(8), 1083–1102 (2005)CrossRefGoogle Scholar
  8. Jaccard, P.: Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise des Sciences Naturelles 44, 223–270 (1908)Google Scholar
  9. Lawrence, J.: Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. Curr. Opin. Genet. Dev. 9(6), 642–648 (1999)CrossRefGoogle Scholar
  10. McLysaght, A., Huson, D.H. (eds.): RECOMB 2005. LNCS (LNBI), vol. 3678. Springer, Heidelberg (2005)Google Scholar
  11. Overbeek, R., Fonstein, M., D’Souza, M., Pusch, G.D., Maltsev, N.: The use of gene clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA 96(6), 2896–2901 (1999)CrossRefGoogle Scholar
  12. Snel, B., Bork, P., Huynen, M.A.: The identification of functional modules from the genomic association of genes. Proc. Natl. Acad. Sci. USA 99(9), 5890–5895 (2002)CrossRefGoogle Scholar
  13. Tatusov, R.L., Natale, D.A., Garkavtsev, I.V., Tatusova, T.A., Shankavaram, U.T., Rao, B.S., Kiryutin, B., Galperin, M.Y., Fedorova, N.D., Koonin, E.V.: The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucl. Acids Res. 29(1), 22–28 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Melvin Zhang
    • 1
  • Hon Wai Leong
    • 1
  1. 1.School of ComputingNational University of Singapore 

Personalised recommendations