Advertisement

Limitations of Pseudogenes in Identifying Gene Losses

  • James C. Costello
  • Mira V. Han
  • Matthew W. Hahn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5267)

Abstract

The loss of previously established genes has been proposed as a major force in evolutionary change. While the sequencing of many new species offers the opportunity to identify cases of gene loss, the best method to do this with is unclear. A number of methods to identify gene losses rely on the presence of a pseudogene for each loss. If genes are completely or largely removed from the genome, however, such methods will fail to identify these cases. As the fate of gene losses is still unclear, we attempt to identify losses using nine Drosophila genomes and determine whether these lost genes leave behind pseudogenes in the lineage leading to D. melanogaster. We were able to find 109 cases of unambiguous gene loss. Of these, a maximum of 18 have identifiable pseudogenes, while the other 91 do not. We were also able to identify a large number of previously unannotated genes in the D. melanogaster genome, most of which also had evidence for transcription. Though our results suggest that pseudogene-based methods for finding gene losses will miss a large proportion of these events, we discuss the dependence of these conclusions on the divergence times among the species considered.

Keywords

Genome Assembly Gene Loss Query Sequence Heterochromatic Region Drosophila Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nielsen, R., Bustamante, C., Clark, A., Glanowski, S., Sackton, T., et al.: A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3, e170 (2005)CrossRefGoogle Scholar
  2. 2.
    Dermitzakis, E., Reymond, A., Lyle, R., Scamuffa, N., Ucla, C., et al.: Numerous potentially functional but non-genic conserved sequences on human chromosome 21. Nature 420, 578–582 (2002)CrossRefGoogle Scholar
  3. 3.
    Pollard, K., Salama, S., Lambert, N., Lambot, M., Coppens, S., et al.: An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443, 167–712 (2006)CrossRefGoogle Scholar
  4. 4.
    Aravind, L., Watanabe, H., Lipman, D., Koonin, E.: Lineage-specific loss and divergence of functionally linked genes in eukaryotes. PNAS USA 97, 11319–11324 (2000)CrossRefGoogle Scholar
  5. 5.
    Hughes, A., Friedman, R.: Recent mammalian gene duplications: robust search for functionally divergent gene pairs. J. Mol. Evo. 59, 114–120 (2004)Google Scholar
  6. 6.
    Roelofs, J., Van Haastert, P.: Genes lost during evolution. Nature 411, 1013–1014 (2001)CrossRefGoogle Scholar
  7. 7.
    Olson, M.: When less is more: gene loss as an engine of evolutionary change, American journal of human genetics. Am. J. Human Genet. 64, 18–23 (1999)CrossRefGoogle Scholar
  8. 8.
    Olson, M., Varki, A.: Sequencing the chimpanzee genome: insights into human evolution and disease. Nature Rev. 4, 20–28 (2003)CrossRefGoogle Scholar
  9. 9.
    Chou, H., Takematsu, H., Diaz, S., Iber, J., Nickerson, E., et al.: A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. PNAS USA 95, 11751–11756 (1998)CrossRefGoogle Scholar
  10. 10.
    Szabo, Z., Levi-Minzi, S., Christiano, A., Struminger, C., Stoneking, M., et al.: Sequential loss of two neighboring exons of the tropoelastin gene during primate evolution. J. Mol. Evo. 49, 664–671 (1999)CrossRefGoogle Scholar
  11. 11.
    Angata, T., Margulies, E., Green, E., Varki, A.: Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. PNAS USA 101, 13251–13256 (2004)CrossRefGoogle Scholar
  12. 12.
    Stedman, H., Kozyak, B., Nelson, A., Thesier, D., Su, L., et al.: Myosin gene mutation correlates with anatomical changes in the human lineage. Nature 428, 415–418 (2004)CrossRefGoogle Scholar
  13. 13.
    Hahn, Y., Lee, B.: Identification of nine human-specific frameshift mutations by comparative analysis of the human and the chimpanzee genome sequences. Bioinformatics 21(suppl.1), 186–194 (2005)CrossRefGoogle Scholar
  14. 14.
    Wang, X., Grus, W., Zhang, J.: Gene losses during human origins. PLoS Biol. 4, 52 (2006)CrossRefGoogle Scholar
  15. 15.
    Zhu, J., Sanborn, J., Diekhans, M., Lowe, C., Pringle, T., Haussler, D.: Comparative Genomics Search for Losses of Long-Established Genes on the Human Lineage. PLoS Comput. Biol. 3, 247 (2007)CrossRefGoogle Scholar
  16. 16.
    Kvikstad, E., Tyekucheva, S., Chiaromonte, F., Makova, K.: A macaque’s-eye view of human insertions and deletions: differences in mechanisms. PLoS Comput. Biol. 3, 1772–1782 (2007)CrossRefGoogle Scholar
  17. 17.
    Petrov, D., Hartl, D.: Patterns of nucleotide substitution in Drosophila and mammalian genomes. PNAS USA 96, 1475–1479 (1999)CrossRefGoogle Scholar
  18. 18.
    Stark, A., Lin, M., Kheradpour, P., Pedersen, J., Parts, L., et al.: Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. nature 450, 219–232 (2007)CrossRefGoogle Scholar
  19. 19.
    Clark, A., Eisen, M., Smith, D., Bergman, C., Oliver, B., et al.: Evolution of genes and genomes on the Drosophila phylogeny. Nature 450, 203–208 (2007)CrossRefGoogle Scholar
  20. 20.
    Richards, S., Liu, Y., Bettencourt, B., Hradecky, P., Letovsky, S., et al.: Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution. Genome Res. 15, 1–18 (2005)CrossRefGoogle Scholar
  21. 21.
    Hahn, M., Han, M., Han, S.G.: Gene Family Evolution across 12 Drosophila Genomes. PLoS Genet. 3, e197 (2007)CrossRefGoogle Scholar
  22. 22.
    Hoskins, R., Carlson, J., Kennedy, C., Acevedo, D., Evans-Holm, M., et al.: Sequence finishing and mapping of Drosophila melanogaster heterochromatin. Science 316, 1625–1628 (2007)CrossRefGoogle Scholar
  23. 23.
    Smith, C., Shu, S., Mungall, C., Karpen, G.: The Release 5.1 annotation of Drosophila melanogaster heterochromatin. Science 316, 1586–1591 (2007)CrossRefGoogle Scholar
  24. 24.
    Birney, E., Clamp, M., Durbin, R.: GeneWise and Genomewise. Genome Res. 14, 988–995 (2004)CrossRefGoogle Scholar
  25. 25.
    Long, M.: A new function evolved from gene fusion. Genome Res. 10, 1655–1657 (2000)CrossRefGoogle Scholar
  26. 26.
    Zhang, Z., Gerstein, M.: Large-scale analysis of pseudogenes in the human genome. Curr. Opin. Genet. Dev. 14, 328–335 (2004)CrossRefGoogle Scholar
  27. 27.
    Demuth, J., De Bie, T., Stajich, J., Cristianini, N., Hahn, M.: The evolution of mammalian gene families. PLoS One 1, e85 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • James C. Costello
    • 1
    • 2
  • Mira V. Han
    • 1
    • 2
  • Matthew W. Hahn
    • 1
    • 2
  1. 1.School of InformaticsIndiana UniversityBloomingtonUSA
  2. 2.Department of BiologyIndiana UniversityBloomingtonUSA

Personalised recommendations