Perfect DCJ Rearrangement

  • Sèverine Bérard
  • Annie Chateau
  • Cedric Chauve
  • Christophe Paul
  • Eric Tannier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5267)


We study the problem of transforming a multichromosomal genome into another using Double-Cut-and-Join (DCJ) operations. We introduce the notion of DCJ scenario that does not break families of common intervals (groups of genes co-localized in both genomes). Such scenarios are called perfect, and generalize the notion of perfect reversal scenarios. While perfect sorting by reversals is NP-hard if the family of common intervals is nested, we show that finding a shortest perfect DCJ scenario can be answered in polynomial time in this case. Moreover, while perfect sorting by reversals is easy when the family of common intervals is weakly separable, we show that the corresponding problem is NP-hard in the DCJ case. These contrast with previous comparisons between the reversal and DCJ models, that showed that most problems have similar complexity in both models.


Prime Node Common Interval Signed Permutation Breakpoint Graph Nest Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adam, Z., Sankoff, D.: The ABC of MGR with DCJ. Evol. Bioinformatics 4, 69–74 (2008)Google Scholar
  2. 2.
    Alekseyev, M., Pevzner, P.: Multi-break rearrangements and chromosomal evolution. Theor. Comput. Sci. (in press, 2008)Google Scholar
  3. 3.
    Bérard, S., Bergeron, A., Chauve, C.: Conservation of combinatorial structures in evolution scenarios. In: Lagergren, J. (ed.) RECOMB-WS 2004. LNCS (LNBI), vol. 3388, pp. 1–14. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Bérard, S., Bergeron, A., Chauve, C., Paul, C.: Perfect sorting by reversals is not always difficult. IEEE/ACM Trans. Comput. Biol. Bioinform. 4, 4–16 (2007)CrossRefGoogle Scholar
  5. 5.
    Bérard, S., Chauve, C., Paul, C.: A more efficient algorithm for perfect sorting by reversals. Inform. Proc. Letters 106, 90–95 (2008)CrossRefGoogle Scholar
  6. 6.
    Bergeron, A., Chauve, C., de Montgolfier, F., Raffinot, M.: Computing common intervals of k permutations, with applications to modular decomposition of graphs. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 779–790. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Bergeron, A., Mixtacki, J., Stoye, J.: The inversion distance problem. In: Mathematics of Evolution and Phylogeny. Oxford University Press, Oxford (2005)Google Scholar
  8. 8.
    Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 163–173. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Bernt, M., Merkle, D., Middendorf, M.: A fast and exact algorithm for the perfect reversal median. In: Măndoiu, I.I., Zelikovsky, A. (eds.) ISBRA 2007. LNCS (LNBI), vol. 4463, pp. 305–316. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Bourque, G., Pevzner, P.: Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Res. 12, 26–36 (2002)Google Scholar
  11. 11.
    Braga, M., Sagot, M.-F., Scornavacca, C., Tannier, E.: Exploring the solution space of sorting by reversals with experiments and an application to evolution. IEEE/ACM Trans. Comput. Biol. Bioinform (2008)Google Scholar
  12. 12.
    Caprara, A.: The reversal median problem. INFORMS J. Comp. 15, 93–113 (2003)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Diekmann, Y., Sagot, M.-F., Tannier, E.: Evolution under reversals: Parsimony and conservation of common intervals. IEEE/ACM Trans. Comput. Biol. Bioinform. 4, 301–309 (2007)CrossRefGoogle Scholar
  14. 14.
    Figeac, M., Varré, J.-S.: Sorting by reversals with common intervals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 26–37. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Habib, M., Paul, C., Raffinot, M.: Common connected components of interval graphs. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 347–358. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. J. ACM 46, 1–27 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hannenhalli, S., Pevzner, P.A.: Transforming men into mice: polynomial algorithm for genomic distance problem. In: FOCS 1995, pp. 581–592 (1995)Google Scholar
  18. 18.
    Hsu, W.-L., McConnell, R.M.: PC trees and circular-ones arrangements. Theor. Comput. Sci. 296, 99–116 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lenne, R., Solnon, C., Stutzle, T., Tannier, E., Birattari, M.: Reactive stochastic local search algorithms for the genomic median problem. In: van Hemert, J., Cotta, C. (eds.) EvoCOP 2008. LNCS, vol. 4972, pp. 266–276. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Lin, Y., et al.: An efficient algorithm for sorting by block-interchange and its application to the evolution of vibrio species. J. Comput. Biol. 12, 102–112 (2005)CrossRefGoogle Scholar
  21. 21.
    Lu, L., Huang, Y., Wang, T., Chiu, H.-T.: Analysis of circular genome rearrangement by fusions, fissions and block-interchanges. BMC Bioinformatics 7, 295 (2006)CrossRefGoogle Scholar
  22. 22.
    Mixtacki, J.: Genome halving under DCJ revisited. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Murphy, W., et al.: Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309, 613–617 (2005)CrossRefGoogle Scholar
  24. 24.
    Sagot, M.-F., Tannier, E.: Perfect sorting by reversals. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 42–51. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Tannier, E., Bergeron, A., Sagot, M.-F.: Advances on sorting by reversals. Discrete Appl. Math. 155, 881–888 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal genome median and halving problems. In: Proceedings of WABI 2008 (2008)Google Scholar
  27. 27.
    Warren, R., Sankoff, D.: Genome halving with double cut and join. In: APBC 2008, pp. 231–240 (2008)Google Scholar
  28. 28.
    Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21, 3340–3346 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sèverine Bérard
    • 1
    • 2
  • Annie Chateau
    • 2
  • Cedric Chauve
    • 3
  • Christophe Paul
    • 2
  • Eric Tannier
    • 4
  1. 1.Université Montpellier 2, UMR AMAP, MontpellierFrance
  2. 2.CNRS, LIRMM, CNRS UMR55076, Université Montpellier 2MontpellierFrance
  3. 3.Department of MathematicsSimon Fraser UniversityBurnabyCanada
  4. 4.INRIA, LBBE, CNRS UMR5558, Université de Lyon 1VilleurbanneFrance

Personalised recommendations