Skip to main content

Perfect DCJ Rearrangement

  • Conference paper
Comparative Genomics (RECOMB-CG 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5267))

Included in the following conference series:

Abstract

We study the problem of transforming a multichromosomal genome into another using Double-Cut-and-Join (DCJ) operations. We introduce the notion of DCJ scenario that does not break families of common intervals (groups of genes co-localized in both genomes). Such scenarios are called perfect, and generalize the notion of perfect reversal scenarios. While perfect sorting by reversals is NP-hard if the family of common intervals is nested, we show that finding a shortest perfect DCJ scenario can be answered in polynomial time in this case. Moreover, while perfect sorting by reversals is easy when the family of common intervals is weakly separable, we show that the corresponding problem is NP-hard in the DCJ case. These contrast with previous comparisons between the reversal and DCJ models, that showed that most problems have similar complexity in both models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, Z., Sankoff, D.: The ABC of MGR with DCJ. Evol. Bioinformatics 4, 69–74 (2008)

    Google Scholar 

  2. Alekseyev, M., Pevzner, P.: Multi-break rearrangements and chromosomal evolution. Theor. Comput. Sci. (in press, 2008)

    Google Scholar 

  3. Bérard, S., Bergeron, A., Chauve, C.: Conservation of combinatorial structures in evolution scenarios. In: Lagergren, J. (ed.) RECOMB-WS 2004. LNCS (LNBI), vol. 3388, pp. 1–14. Springer, Heidelberg (2005)

    Google Scholar 

  4. Bérard, S., Bergeron, A., Chauve, C., Paul, C.: Perfect sorting by reversals is not always difficult. IEEE/ACM Trans. Comput. Biol. Bioinform. 4, 4–16 (2007)

    Article  Google Scholar 

  5. Bérard, S., Chauve, C., Paul, C.: A more efficient algorithm for perfect sorting by reversals. Inform. Proc. Letters 106, 90–95 (2008)

    Article  Google Scholar 

  6. Bergeron, A., Chauve, C., de Montgolfier, F., Raffinot, M.: Computing common intervals of k permutations, with applications to modular decomposition of graphs. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 779–790. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Bergeron, A., Mixtacki, J., Stoye, J.: The inversion distance problem. In: Mathematics of Evolution and Phylogeny. Oxford University Press, Oxford (2005)

    Google Scholar 

  8. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 163–173. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Bernt, M., Merkle, D., Middendorf, M.: A fast and exact algorithm for the perfect reversal median. In: Măndoiu, I.I., Zelikovsky, A. (eds.) ISBRA 2007. LNCS (LNBI), vol. 4463, pp. 305–316. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Bourque, G., Pevzner, P.: Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Res. 12, 26–36 (2002)

    Google Scholar 

  11. Braga, M., Sagot, M.-F., Scornavacca, C., Tannier, E.: Exploring the solution space of sorting by reversals with experiments and an application to evolution. IEEE/ACM Trans. Comput. Biol. Bioinform (2008)

    Google Scholar 

  12. Caprara, A.: The reversal median problem. INFORMS J. Comp. 15, 93–113 (2003)

    Article  MathSciNet  Google Scholar 

  13. Diekmann, Y., Sagot, M.-F., Tannier, E.: Evolution under reversals: Parsimony and conservation of common intervals. IEEE/ACM Trans. Comput. Biol. Bioinform. 4, 301–309 (2007)

    Article  Google Scholar 

  14. Figeac, M., Varré, J.-S.: Sorting by reversals with common intervals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 26–37. Springer, Heidelberg (2004)

    Google Scholar 

  15. Habib, M., Paul, C., Raffinot, M.: Common connected components of interval graphs. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 347–358. Springer, Heidelberg (2004)

    Google Scholar 

  16. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. J. ACM 46, 1–27 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hannenhalli, S., Pevzner, P.A.: Transforming men into mice: polynomial algorithm for genomic distance problem. In: FOCS 1995, pp. 581–592 (1995)

    Google Scholar 

  18. Hsu, W.-L., McConnell, R.M.: PC trees and circular-ones arrangements. Theor. Comput. Sci. 296, 99–116 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lenne, R., Solnon, C., Stutzle, T., Tannier, E., Birattari, M.: Reactive stochastic local search algorithms for the genomic median problem. In: van Hemert, J., Cotta, C. (eds.) EvoCOP 2008. LNCS, vol. 4972, pp. 266–276. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Lin, Y., et al.: An efficient algorithm for sorting by block-interchange and its application to the evolution of vibrio species. J. Comput. Biol. 12, 102–112 (2005)

    Article  Google Scholar 

  21. Lu, L., Huang, Y., Wang, T., Chiu, H.-T.: Analysis of circular genome rearrangement by fusions, fissions and block-interchanges. BMC Bioinformatics 7, 295 (2006)

    Article  Google Scholar 

  22. Mixtacki, J.: Genome halving under DCJ revisited. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Murphy, W., et al.: Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309, 613–617 (2005)

    Article  Google Scholar 

  24. Sagot, M.-F., Tannier, E.: Perfect sorting by reversals. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 42–51. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Tannier, E., Bergeron, A., Sagot, M.-F.: Advances on sorting by reversals. Discrete Appl. Math. 155, 881–888 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal genome median and halving problems. In: Proceedings of WABI 2008 (2008)

    Google Scholar 

  27. Warren, R., Sankoff, D.: Genome halving with double cut and join. In: APBC 2008, pp. 231–240 (2008)

    Google Scholar 

  28. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21, 3340–3346 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bérard, S., Chateau, A., Chauve, C., Paul, C., Tannier, E. (2008). Perfect DCJ Rearrangement. In: Nelson, C.E., Vialette, S. (eds) Comparative Genomics. RECOMB-CG 2008. Lecture Notes in Computer Science(), vol 5267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87989-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87989-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87988-6

  • Online ISBN: 978-3-540-87989-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics