Skip to main content

Topological Properties of Concept Spaces

  • Conference paper
  • 1315 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5254))

Abstract

Based on the observation that the category of concept spaces with the positive information topology is equivalent to the category of countably based T 0 topological spaces, we investigate further connections between the learning in the limit model of inductive inference and topology. In particular, we show that the “texts” or “positive presentations” of concepts in inductive inference can be viewed as special cases of the “admissible representations” of computable analysis. We also show that several structural properties of concept spaces have well known topological equivalents. In addition to topological methods, we use algebraic closure operators to analyze the structure of concept spaces, and we show the connection between these two approaches. The goal of this paper is not only to introduce new perspectives to learning theorists, but also to present the field of inductive inference in a way more accessible to domain theorists and topologists.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angluin, D.: Inductive inference of formal languages from positive data. Information and Control 45, 117–135 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Angluin, D.: Inference of reversible languages. Journal of the ACM 29, 741–765 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aull, C.E., Thron, W.J.: Separation axioms between T 0 and T 1. Indag. Math. 24, 26–37 (1963)

    MathSciNet  Google Scholar 

  4. Brown, D.J., Suszko, R.: Abstract logics. Dissertationes Mathematicae 102, 9–41 (1973)

    MathSciNet  Google Scholar 

  5. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer, Heidelberg (1981)

    MATH  Google Scholar 

  6. de Brecht, M., Kobayashi, M., Tokunaga, H., Yamamoto, A.: Inferability of closed set sytems from positive data. In: Washio, T., Satoh, K., Takeda, H., Inokuchi, A. (eds.) JSAI 2006. LNCS (LNAI), vol. 4384, pp. 265–275. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. de Brecht, M., Yamamoto, A.: Mind change complexity of inferring unbounded unions of pattern languages from positive data. In: Balcázar, J.L., Long, P.M., Stephan, F. (eds.) ALT 2006. LNCS (LNAI), vol. 4264, pp. 124–138. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Freivalds, R., Smith, C.H.: On the role of procrastination for machine learning. Information and Computation 107, 237–271 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M.W., Scott, D.W.: Continuous Lattices and Domains. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  10. Gold, E.M.: Language identification in the limit. Information and Control 10, 447–474 (1967)

    Article  MATH  Google Scholar 

  11. Jain, S., Kinber, E., Wiehagen, R.: Language learning from texts: Degrees of intrinsic complexity and their characterizations. Journal of Computer and System Sciences 63, 305–354 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jain, S., Sharma, A.: The intrinsic complexity of language identification. Journal of Computer and System Sciences 52, 393–402 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  14. Kechris, A.: Classical Descriptive Set Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  15. Kelley, J.: General Topology. Springer, Heidelberg (1975)

    MATH  Google Scholar 

  16. Kelly, K.: The Logic of Reliable Inquiry. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  17. Kobayashi, S.: Approximate identification, finite elasticity and lattice structure of hypothesis space. Technical Report, CSIM 96-04, Dept. of Compt. Sci. and Inform. Math., Univ. of Electro- Communications (1996)

    Google Scholar 

  18. Luo, W., Schulte, O.: Mind change efficient learning. Information and Computation 204, 989–1011 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)

    MATH  Google Scholar 

  20. Martin, E., Osherson, D.: Elements of Scientific Inquiry. MIT Press, Cambridge (1998)

    Google Scholar 

  21. Martin, E., Sharma, A., Stephan, F.: Unifying logic, topology and learning in parametric logic. Theoretical Computer Science 350, 103–124 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Motoki, T., Shinohara, T., Wright, K.: The correct definition of finite elasticity: Corrigendum to identification of unions. In: Proc. COLT 1991, p. 375 (1991)

    Google Scholar 

  23. Sato, M., Mukouchi, Y., Zheng, D.: Characteristic sets for unions of regular pattern languages and compactness. In: Richter, M.M., Smith, C.H., Wiehagen, R., Zeugmann, T. (eds.) ALT 1998. LNCS (LNAI), vol. 1501, pp. 220–233. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  24. Sato, M., Umayahara, K.: Inductive inferability for formal languages from positive data. IEICE Trans. Inf. and Syst. E75-D(4), 415–419 (1992)

    Google Scholar 

  25. Schröder, M.: Extended admissibility. Theoretical Computer Science 284, 519–538 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Stephan, F., Ventsov, Y.: Learning algebraic structures from text. Theoretical Computer Science 268, 221–273 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  28. Wright, K.: Identification of unions of languages drawn from an identifiable class. In: Proc. COLT 1989, pp. 328–333 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Brecht, M., Yamamoto, A. (2008). Topological Properties of Concept Spaces. In: Freund, Y., Györfi, L., Turán, G., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2008. Lecture Notes in Computer Science(), vol 5254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87987-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87987-9_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87986-2

  • Online ISBN: 978-3-540-87987-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics