Skip to main content

Coordinated Nutrient Exchange in Arbuscular Mycorrhiza

  • Chapter
  • First Online:
Mycorrhizas - Functional Processes and Ecological Impact

Abstract

Arbuscular mycorrhizal (AM) fungi, as obligate biotrophs, rely for their growth and activity on carbon provided by their host plant and, in exchange, they improve the mineral nutrition of the plant, in particular the acquisition of phosphorus and to some extent of nitrogen and other minor nutrients. This nutrient exchange takes place across the symbiotic interfaces that are developed as the fungus colonizes the root system. In this chapter, we provide an overview of the biochemical and molecular mechanisms involved in nutrient transport processes in AM, with special emphasis on those underlying the bidirectional nutrient exchange between symbionts at the symbiotic interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aono T, Maldonado-Mendoza IE, Dewbre GR, Harrison MJ, Saito M (2004) Expression of alkaline phosphatase genes in arbuscular mycorrhizas. New Phytol 162:525–534

    Article  CAS  Google Scholar 

  • Bago B, Vierheilig H, Piché Y, Azcón-Aguilar C (1996) Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. grown in monoxenic culture New Phytol 133:273–280

    Article  Google Scholar 

  • Bago B, Pfeffer PE, Douds DD, Brouillette J, Bécard G, Shachar-Hill Y (1999) Carbon metabolism in spores of the arbuscular mycorrhizal fungus Glomus intraradices. as revealed by nuclear magnetic resonance spectroscopy Plant Physiol 121:263–271

    Article  PubMed  CAS  Google Scholar 

  • Bago B, Pfeffer P, Shachar-Hill Y (2001) Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis? New Phytol 149:4–8

    Article  CAS  Google Scholar 

  • Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y (2002) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108–124

    Article  PubMed  CAS  Google Scholar 

  • Balestrini R, Bonfante P (2005) The interface compartment in arbuscular mycorrhizae: a special type of plant cell wall. Plant Biosystems 139:8–15

    Article  Google Scholar 

  • Benedetto A, Magurno F, Bonfante P, Lanfranco L (2005) Expression profiles of a phosphate transporter gene (GmosPT. ) from the endomycorrhizal fungus Glomus mosseae Mycorrhiza 15:620–627

    Article  PubMed  CAS  Google Scholar 

  • Blee KA, Anderson AJ (2002) Transcripts for genes encoding soluble acid invertase and sucrose synthase accumulate in root tip and cortical cells containing mycorrhizal arbuscules. Plant Mol Biol 50:197–211

    Article  PubMed  CAS  Google Scholar 

  • Bonfante P (2001) At the interface between mycorrhizal fungi and plants: the structural organization of cell wall, plasma membrane and cytoskeleton. Hock B The Mycota: Fungal Associations, Springer, Berlin 45–61

    Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  PubMed  CAS  Google Scholar 

  • Burleigh SH (2001) Relative quantitative RT-PCR to study the expression of plant nutrient transporters in arbuscular mycorrhizas. Plant Sci 160:899–904

    Article  PubMed  CAS  Google Scholar 

  • Chalot M, Blaudez D, Brun A (2006) Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Trends Plant Sci 11:263–266

    Article  PubMed  CAS  Google Scholar 

  • Chen AQ, Hu J, Sun SB, Xu GH (2007) Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. New Phytol 173:817–831

    Article  PubMed  CAS  Google Scholar 

  • Cruz C, Egsgaard H, Trujillo C, Ambus P, Requena N, Martins-Loucao MA, Jakobsen I (2007) Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhizal fungi. Plant Physiol 144:782–792

    Article  PubMed  CAS  Google Scholar 

  • Deguchi Y, Banba M, Shimoda Y, Chechetka SA, Suzuri R, Okusako Y, Ooki Y, Toyokura K, Suzuki A, Uchiumi T, Higashi S, Abe M, Kouchi H, Izui K, Hata S (2007) Transcriptome profiling of Lotus japonicus. roots during arbuscular mycorrhiza development and comparison with that of nodulation DNA Res 14:117–133

    Article  PubMed  CAS  Google Scholar 

  • Ezawa T, Smith SE, Smith FA (2002) P metabolism and transport in AM fungi. Plant Soil 244:221–230

    Article  CAS  Google Scholar 

  • Ferrol N, Barea JM, Azcón-Aguilar C (2000) The plasma membrane H+-ATPase gene family in the arbuscular mycorrhizal fungus Glomus mosseae Current Genet 37:112–118

    Article  CAS  Google Scholar 

  • Ferrol N, Barea JM, Azcón-Aguilar C (2002a) Mechanisms of nutrient transport across interfaces in arbuscular mycorrhizas. Plant Soil 244:231–237

    Article  CAS  Google Scholar 

  • Ferrol N, Pozo MJ, Antelo M, Azcón-Aguilar C (2002b) Arbuscular mycorrhizal symbiosis regulates plasma membrane H+-ATPase gene expression in tomato plants J Exp Bot 53:1683–1687

    Article  CAS  Google Scholar 

  • Frenzel A, Manthey K, Perlick AM, Meyer F, Puhler A, Kuster H, Krajinski F (2005) Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula. lectin genes Mol Plant Microbe Interact 18:771–782

    Article  PubMed  CAS  Google Scholar 

  • Frey B, Schuepp H (1993) Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays. L New Phytol 124:221–230

    Article  Google Scholar 

  • Funamoto R, Saito K, Oyaizu H, Saito M, Aono T (2007) Simultaneous in situ detection of alkaline phosphatase activity and polyphosphate in arbuscules within arbuscular mycorrhizal roots. Funct Plant Biol 34:803–810

    Article  CAS  Google Scholar 

  • García-Rodríguez S, Pozo MJ, Azcón-Aguilar C, Ferrol N (2005) Expression of a tomato sugar transporter is increased in leaves of mycorrhizal or Phytophthora parasitica. -infected plants Mycorrhiza 15:489–496

    Article  PubMed  Google Scholar 

  • García-Rodríguez S, Azcón-Aguilar C, Ferrol N (2007) Transcriptional regulation of host enzymes involved in the cleavage of sucrose during arbuscular mycorrhizal symbiosis. Physiol Plant 129:737–746

    Article  Google Scholar 

  • Gianinazzi-Pearson V, Arnould C, Oufattole M, Arango M, Gianinazzi S (2000) Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco Planta 211:609–613

    Article  PubMed  CAS  Google Scholar 

  • Glassop D, Smith SE, Smith FW (2005) Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222:688–698

    Article  PubMed  CAS  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin HR, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  PubMed  CAS  Google Scholar 

  • Graham JH (2000) Assessing costs of arbuscular mycorrhizal symbiosis agroecosystems fungi. Podila GK, Douds DD Jr. Current Advances in Mycorrhizae Research. APS Press, St. Paul, MN 127–140

    Google Scholar 

  • Güimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ionnidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci USA 102:8066–8070

    Article  PubMed  Google Scholar 

  • Harrison MJ (1996) A sugar transporter from Medicago truncatula. : Altered expression pattern in roots during vesicular-arbuscular (VA) mycorrhizal associations Plant J 9:491–503

    Article  PubMed  CAS  Google Scholar 

  • Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629

    Article  PubMed  CAS  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu JY (2002) A phosphate transporter from Medicago truncatula. involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi Plant Cell 14:2413–2429

    Article  PubMed  CAS  Google Scholar 

  • Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285

    Article  CAS  Google Scholar 

  • Hildebrandt U, Schmelzer E, Bothe H (2002) Expression of nitrate transporter genes in tomato colonized by an arbuscular mycorrhizal fungus. Physiol Plant 115:125–136

    Article  PubMed  CAS  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  PubMed  CAS  Google Scholar 

  • Hohnjec N, Perlick AM, Pühler A, Kuster H (2003) The Medicago truncatula. sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi Mol Plant Microbe Interact 16:903–915

    Article  PubMed  CAS  Google Scholar 

  • Hohnjec N, Vieweg ME, Pühler A, Becker A, Kuster H (2005) Overlaps in the transcriptional profiles of Medicago truncatula. roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza Plant Physiol 137:1283–1301

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular arbuscular-mycorrhizal fungi associated with Trifolium subterraneum. L. 2. Hyphal transport of 32P over defined distances. New Phytol 120:509–516

    Article  CAS  Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007a) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322

    Article  CAS  Google Scholar 

  • Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007b) A Medicago truncatula. phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis Proc Natl Acad Sci USA 104:1720–1725

    Article  CAS  Google Scholar 

  • Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–696

    Article  PubMed  CAS  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1992) Hyphal transport of 15N-labeled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N New Phytol 122:281–288

    Article  CAS  Google Scholar 

  • Johansen A, Finlay RD, Olsson PA (1996) Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 133:705–712

    Article  CAS  Google Scholar 

  • Krajinski F, Hause B, Gianinazzi-Pearson V, Franken P (2002) Mtha1, a plasma membrane H+-ATPase gene from Medicago truncatula, shows arbuscule-specific induced expression in mycorrhizal tissue Plant Biol 4:754–761

    Article  CAS  Google Scholar 

  • Liu H, Trieu AT, Blaylock LA, Harrison MJ (1998) Cloning and characterization of two phosphate transporters from Medicago truncatula. roots: Regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi Mol Plant Microbe Interact 11:14–22

    Article  PubMed  CAS  Google Scholar 

  • López-Pedrosa A, González-Guerrero M, Valderas A, Azcón-Aguilar C, Ferrol N (2006) GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet Biol 43:102–110

    Article  PubMed  Google Scholar 

  • Maeda D, Ashida K, Iguchi K, Chechetka SA, Hijikata A, Okusako Y, Deguchi Y, Izui K, Hata S (2006) Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus. suppresses mutualistic symbiosis Plant Cell Physiol 47:807–817

    Article  PubMed  CAS  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices. is regulated in response to phosphate in the environment Mol Plant Microbe Interact 14:1140–1148

    Article  PubMed  CAS  Google Scholar 

  • Marzluf GA (1996) Regulation of nitrogen metabolism in mycelial fungi. Brambl R, Marzluf GA The Mycota III: Biochemistry and Molecular Biology. Springer, Berlin, Heidelberg 357–368

    Google Scholar 

  • Murphy PJ, Langridge P, Smith SE (1997) Cloning plant genes differentially expressed during colonization of roots of Hordeum vulgare. by the vesicular-arbuscular mycorrhizal fungus Glomus intraradices New Phytol 135:291–301

    Article  CAS  Google Scholar 

  • Nagy R, Karandashov V, Chague W, Kalinkevich K, Tamasloukht M, Xu GH, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum. and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species Plant J 42:236–250

    Article  PubMed  CAS  Google Scholar 

  • Ohtomo R, Saito M (2005) Polyphosphate dynamics in mycorrhizal roots during colonization of an arbuscular mycorrhizal fungus. New Phytol 167:571–578

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 99:13324–13329

    Article  PubMed  CAS  Google Scholar 

  • Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414:462–466

    Article  PubMed  CAS  Google Scholar 

  • Ravnskov S, Wu Y, Graham JH (2003) Arbuscular mycorrhizal fungi differentially affect expression of genes coding for sucrose synthases in maize roots. New Phytol 157:539–545

    Article  CAS  Google Scholar 

  • Requena N, Breuninger M, Franken P, Ocon A (2003) Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H+-ATPase genes from the mycorrhizal fungus Glomus mosseae Plant Physiol 132:1540–1549

    Article  PubMed  CAS  Google Scholar 

  • Sauer N (2007) Molecular physiology of higher plant sucrose transporters. FEBS Lett 581:2309–2317

    Article  PubMed  CAS  Google Scholar 

  • Schaarschmidt S, Roitsch T, Hause B (2006) Arbuscular mycorrhiza induces gene expression of the apoplastic invertase LIN6 in tomato (Lycopersicon esculentum. ) roots J Exp Bot 57:4015–4023

    Article  PubMed  CAS  Google Scholar 

  • Schaarschmidt S, González MC, Roitsch T, Strack D, Sonnewald U, Hause B (2007a) Regulation of arbuscular mycorrhization by carbon. The symbiotic interaction cannot be improved by increased carbon availability accomplished by root-specifically enhanced invertase activity. Plant Physiol 143:1827–1840

    CAS  Google Scholar 

  • Schaarschmidt S, Kopka J, Ludwig-Muller J, Hause B (2007b) Regulation of arbuscular mycorrhization by apoplastic invertases: enhanced invertase activity in the leaf apoplast affects the symbiotic interaction. Plant J 51:390–405

    Article  CAS  Google Scholar 

  • Schubert A, Allara P, Morte A (2004) Cleavage of sucrose in roots of soybean (Glycine max. ) colonized by an arbuscular mycorrhizal fungus New Phytol 161:495–501

    Article  CAS  Google Scholar 

  • Schüβler A, Martin H, Cohen D, Fitz M, Wipf D (2006) Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933–936

    Article  Google Scholar 

  • Shachar-Hill Y, Pfeffer PE, Douds D, Osman SF, Doner LW, Ratcliffe RG (1995) Partitioning of intermediary carbon metabolism in vesicular-arbuscular mycorrhizal leek. Plant Physiol 108:7–15

    PubMed  CAS  Google Scholar 

  • Smith SE, Read DK (1997) Mycorrhizal Symbiosis. Academic, London

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Solaiman MDZ, Saito M (1997) Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry. New Phytol 136:533–538

    Article  CAS  Google Scholar 

  • Sturm A, Tang GQ (1999) The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci 4:401–407

    Article  PubMed  Google Scholar 

  • Tinker PB, Durall DM, Jones MD (1994) Carbon efficiency in mycorrhizas - Theory and sample calculations. New Phytol 128:115–122

    Article  CAS  Google Scholar 

  • Tobar R, Azcón R, Barea JM (1994) Improved nitrogen uptake and transport from 15N-labeled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions New Phytol 126:119–122

    Article  Google Scholar 

  • Toussaint JP, St-Arnaud M, Charest C (2004) Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices. Schenck and Smith and Ri T-DNA roots of Daucus carota L in an in vitro compartmented system. Can J Microbiol 50:251–260

    CAS  Google Scholar 

  • Uetake Y, Kojima T, Ezawa T, Saito M (2002) Extensive tubular vacuole system in an arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 154:761–768

    Article  Google Scholar 

  • Wright DP, Scholes JD, Read DJ (1998a) Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens. L Plant Cell Environ 21:209–216

    Article  Google Scholar 

  • Wright DP, Read DJ, Scholes JD (1998b) Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens. L Plant Cell Environ 21:881–891

    Article  Google Scholar 

  • Wright DP, Scholes JD, Read DJ, Rolfe SA (2005) European and African maize cultivars differ in their physiological and molecular responses to mycorrhizal infection. New Phytol 167:881–896

    Article  PubMed  CAS  Google Scholar 

  • Xu GH, Chague V, Melamed-Bessudo C, Kapulnik Y, Jain A, Raghothama KG, Levy AA, Silber A (2007) Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression. J Exp Bot 58:2491–2501

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the CICyT project AGL2006-08218/AGR, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Pérez-Tienda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferrol, N., Pérez-Tienda, J. (2009). Coordinated Nutrient Exchange in Arbuscular Mycorrhiza . In: Azcón-Aguilar, C., Barea, J., Gianinazzi, S., Gianinazzi-Pearson, V. (eds) Mycorrhizas - Functional Processes and Ecological Impact. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87978-7_6

Download citation

Publish with us

Policies and ethics