Skip to main content

The Role of Retromer in Neurodegenerative Disease

  • Chapter
Intracellular Traffic and Neurodegenerative Disorders

Part of the book series: Research and Perspectives in Alzheimer's Disease ((ALZHEIMER))

Abstract

Bi-directional membrane traffic between the Golgi and endosomes plays a vital role in the biogenesis of lysosomes and the localisation of many membrane proteins with diverse physiological functions. The receptors that mediate sorting of lysosomal hydrolases at the Golgi traffic rapidly between the Golgi and endosomes to deliver newly synthesised hydrolases to a pre-lysosomal endosome before returning to the Golgi to repeat the process. The mislocalisation of endosomal and/or lysosomal proteins due to aberrant protein sorting can give rise to a range of pathologies, and there are emerging strands of evidence that defects in the endosome-to-Golgi retrieval pathway contribute significantly to neurodegenerative diseases such as Alzheimer's disease. The retromer complex that is conserved from yeast to humans plays a major role in endosomal protein sorting and is required for endosome-to-Golgi retrieval. In this review we will discuss the identification, assembly, membrane association and function of the retromer complex and will describe recent evidence linking retromer function with neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J, von Arnim CA, Breiderhoff T, Jansen P, Wu X, Bales KR, Cappai R, Masters CL, Gliemann J, Mufson EJ, Hyman BT, Paul SM, Nykjaer A, Willnow TE (2005) Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci USA. 102:13461–13466

    Article  CAS  PubMed  Google Scholar 

  • Arighi CN, Hartnell LM, Aguilar RC, Haft CR, Bonifacino JS (2004) Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol 165:123–133

    Article  CAS  PubMed  Google Scholar 

  • Barton GJ, Cohen PT, Barford D (1994) Conservation analysis and structure prediction of the protein serine/threonine phosphatases. Sequence similarity with diadenosine tetraphosphatase from Escherichia coli suggests homology to the protein phosphatases. Eur J Biochem 220:225–237

    Article  CAS  PubMed  Google Scholar 

  • Bryant NJ, Stevens TH (1998) Vacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the vacuole. Microbiol Mol Biol Rev 62:230–247

    CAS  PubMed  Google Scholar 

  • Burda P, Padilla SM, Sarkar S, Emr SD (2002) Retromer function in endosome-to-Golgi retrograde transport is regulated by the yeast Vps34 Ptd Ins 3-kinase. J Cell Sci 115:3889–900

    Article  CAS  PubMed  Google Scholar 

  • Canuel M, Lefrancois S, Zeng J, Morales CR (2008) AP-1 and retromer play opposite roles in the trafficking of sortilin between the Golgi apparatus and the lysosomes. Biochem Biophys Res Commun 366:724–730

    Article  CAS  PubMed  Google Scholar 

  • Carlton J, Bujny M, Peter BJ, Oorschot VM, Rutherford A, Mellor H, Klumperman J, McMahon HT, Cullen PJ (2004) Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high- curvature membranes and 3-phosphoinositides. Curr Biol 14:1791–1800

    Article  CAS  PubMed  Google Scholar 

  • Cereghino J.-L., Marcusson EG, Emr SD (1995) The cytoplasmic tail domain of the vacuolar sorting receptor Vps10p and a subset of VPS gene products regulate receptor stability, function, and localization. Mol Biol Cell 6:1089–1102

    CAS  PubMed  Google Scholar 

  • Collins BM, Skinner CF, Watson PJ, Seaman MN, Owen DJ (2005) Vps29 has a phosphoesterase fold that acts as a protein interaction scaffold for retromer assembly. Nat Struct Mol Biol 12:594–602

    Article  CAS  PubMed  Google Scholar 

  • Collins BM, Norwood SJ, Kerr MC, Mahony D, Seaman MN, Teasdale RD, Owen DJ (2008) Structure of Vps26B and mapping of its interaction with the retromer protein complex. Traffic 9:366–379

    Article  CAS  PubMed  Google Scholar 

  • Cooper AA, Stevens TH (1996) Vps10p cycles between the late-Golgi and prevacuolar compartments in its function as the sorting receptor for multiple yeast vacuolar hydrolases. J Cell Biol 133:529–542

    Article  CAS  PubMed  Google Scholar 

  • Costaguta G, Stefan CJ, Bensen ES, Emr SD, Payne GS (2001) Yeast GGA coat proteins function with clathrin in Golgi to endosome transport. Mol Biol Cell 12:1885–1896

    CAS  PubMed  Google Scholar 

  • Cozier GE, Carlton J, McGregor AH, Gleeson PA, Teasdale RD, Mellor H, Cullen PJ (2002) The Phox homology (PX) domain-dependent, 3-phosphoinositide-mediated association of Sorting Nexin-1 with an early sorting endosomal comparment is required for its ability to regulate epidermal growth factor receptor degradation. J Biol Chem 277:48730–48736

    Article  CAS  PubMed  Google Scholar 

  • Dell'Angelica EC, Puertollano R, Mullins C, Aguilar RC, Vargas JD, Hartnell LM, Bonifacino JS (2000) GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J Cell Biol 149:81–94

    Article  PubMed  Google Scholar 

  • Gokool S, Tattersall D, Reddy JV, Seaman MN (2007a) Identification of a conserved motif required for Vps35p/Vps26p interaction and assembly of the retromer complex. Biochem J 408:287–295

    Article  CAS  Google Scholar 

  • Gokool S, Tattersall D, Seaman MN (2007b) EHD1 interacts with retromer to stabilize SNX1 tubules and facilitate endosome-to-Golgi retrieval. Traffic 8:1873–1886

    Article  CAS  Google Scholar 

  • Horazdovsky BF, Davies BA, Seaman, MNJ, McLaughlin SA, Yoon S.-H., Emr SD (1997) A sorting nexin-1 homologue, Vps5p, forms a complex with Vps17p and is required for recycling the vacuolar protein-sorting receptor. Mol Biol Cell 8:1529–1541

    CAS  PubMed  Google Scholar 

  • Hwang S, Benjamin LE, Oh B, Rothstein JL, Ackerman SL, Beddington RS, Solter D, Knowles BB (1996) Genetic mapping and embryonic expression of a novel maternally transcribed gene, Mem3. Mamm Genome 7:586–590

    Article  CAS  PubMed  Google Scholar 

  • Itin C, Ulitzur N, Muhlbauer B, Pfeffer SR (1999) Mapmodulin, cytoplasmic dynein, and microtubules enhance the transport of mannose 6-phosphate receptors from endosomes to the trans-Golgi network. Mol Biol Cell 10:2191–2197

    CAS  PubMed  Google Scholar 

  • Kametaka S, Okano T, Ohsumi M, Ohsumi Y (1998) Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J Biol Chem 273:22284–22291

    Article  CAS  PubMed  Google Scholar 

  • Kihara A, Noda T, Ishihara N, Ohsumi Y (2001) Two distinct Vps34 phosphotidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152:519–530

    Article  CAS  PubMed  Google Scholar 

  • Kohrer K, Emr SD (1993) The yeast VPS17 gene encodes a membrane-associated protein required for the sorting of soluble vacuolar hydrolases. J Biol Chem 268:559–569

    CAS  PubMed  Google Scholar 

  • Kornfeld S (1992) Structure and function of the mannose 6-phosphate/insulin-like growth factor II receptors. Annu Rev Biochem 61:307–330

    Article  CAS  PubMed  Google Scholar 

  • Kurten RC, Cadena DL, Gill GN (1996) Enhanced degradation of EGF receptors by a sorting nexin, SNX1. Science 272:1008–1010

    Article  CAS  PubMed  Google Scholar 

  • Kurten RC, Eddington AD, Chowdhury P, Smith RD, Davidson AD, Shank BB (2001) Self-assembly and binding of a sorting nexin to sorting endosomes. J Cell Sci 114:1743–1756

    CAS  PubMed  Google Scholar 

  • Lee JJ, Radice G, Perkins C, Costantini F (1992) Identification and characterization of a novel, evolutionary conserved gene disrupted by the murine Hβ58 embryonic lethal transgene insertion. Development 115:277–288

    CAS  PubMed  Google Scholar 

  • Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumourigenesis by beclin 1. Nature 402:672–676

    Article  CAS  PubMed  Google Scholar 

  • Marcusson EG, Horazdovsky BF, Cereghino J.-L., Gharakhanian E, Emr SD (1994) The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the VPS10 gene. Cell 77:579–586

    Article  CAS  PubMed  Google Scholar 

  • Misra S, Puertollano R, Kato Y, Bonifacino JS, Hurley JH (2002) Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature 21:933–937

    Article  Google Scholar 

  • Ni X, Canuel M, Morales CR (2006) The sorting and trafficking of lysosomal proteins. Histol Histopathol 21:899–913

    CAS  PubMed  Google Scholar 

  • Nielsen MS, Gustafsen C, Madsen P, Nyengaard JR, Hermey G, Bakke O, Mari M, Schu P, Pohlmann R, Dennes A, Petersen CM (2007) Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA. Mol Cell Biol 27:6842–6851

    Article  CAS  PubMed  Google Scholar 

  • Nothwehr SF, Hindes AH (1997) The yeast VPS5/GRD2 gene encodes a sorting nexin-1-like protein required for localizing membrane proteins to the late Golgi. J Cell Sci 110:1063–1072

    CAS  PubMed  Google Scholar 

  • Nothwehr SF, Bruinsma P, Strawn LS (1999) Distinct Domains within Vps35p mediate retrieval of two different cargo proteins from the yeast prevacuolar/endosomal compartment. Mol Biol Cell 10:875–890

    CAS  PubMed  Google Scholar 

  • Nothwehr SF, Ha S.-A., Bruinsma P (2000) Sorting of Yeast Membrane Proteins into an Endosomal-to-Golgi Pathway Involves Direct Interaction of their Cytosolic Domains with Vps35p. J Cell Biol 151:297–309

    Article  CAS  PubMed  Google Scholar 

  • Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR, McMahon HT (2004) BAR domains as sensors of membrane curvature: The Amphiphysin BAR structure. Science 303:495–499

    Article  CAS  PubMed  Google Scholar 

  • Popoff V, Mardones GA, Tenza D, Rojas R, Lamaze C, Bonifacino JS, Raposo G, Johannes L (2007) The retromer complex and clathrin define an early endosomal retrograde exit site. J Cell Sci 120:2022–2031

    Article  CAS  PubMed  Google Scholar 

  • Reddy JV, Seaman MNJ (2001) Vps26p, a component of retromer, directs the interactions of Vps35p in Endosome-to-Golgi retrieval. Mol Biol Cell 12:3242–3256

    CAS  PubMed  Google Scholar 

  • Renfrew-Haft C, Sierra M, Bafford R, Lesniak MA, Barr VA, Taylor SI (2000) Human Orthologs of Yeast Vacuolar Protein Sorting Proteins Vps26, 29 and 35: Assembly into Multimeric complexes. Mol Biol Cell 11:4105–4116

    Google Scholar 

  • Restrepo R, Zhao X, Peter H, Zhang BY, Arvan P, Nothwehr SF (2007) Structural features of vps35p involved in interaction with other subunits of the retromer complex. Traffic 8:1841–1853

    Article  CAS  PubMed  Google Scholar 

  • Riederer MA, Soldati T, Shapiro AD, Lin J, Pfeffer SR (1994) Lysosome biogenesis requires Rab9 function and receptor recycling from endosome to the trans-Golgi network. J Cell Biol 125:573–582

    Article  CAS  PubMed  Google Scholar 

  • Seaman MN (2007) Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN retrieval. J Cell Sci 120:2378–2389

    Article  CAS  PubMed  Google Scholar 

  • Seaman, MNJ (2004) Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J Cell Biol 165:111–122

    Article  CAS  PubMed  Google Scholar 

  • Seaman MNJ, Williams HP (2002) Identification of the functional domains of yeast sorting nexins Vps5p and Vps17p. Mol Biol Cell 13:2826–2840

    Article  CAS  PubMed  Google Scholar 

  • Seaman MNJ, Marcusson EG, Cereghino J-L, Emr SD (1997) Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of VPS29, VPS30 and VPS35 gene products. J Cell Biol 137:79–92

    Article  CAS  PubMed  Google Scholar 

  • Seaman MNJ, McCaffery JM, Emr SD (1998) A Membrane coat Complex Essential for Endosome-to-Golgi retrograde transport in Yeast. J Cell Biol 141:665–681

    Article  Google Scholar 

  • Shi H, Rojas R, Bonifacino JS, Hurley JH (2006) The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain. Nature Struct Mol Biol 13:540–548

    Article  CAS  Google Scholar 

  • Shiba T, Takatsu H, Nogi T, Matsugaki N, Kawasaki M, Igarashi N, Suzuki M, Kato R, Earnest T, Nakayama K, Wakatsuki S (2002) Structural basis for the recognition of acidic cluster dileucine sequences by GGA1. Nature 21:937–941

    Article  Google Scholar 

  • Small SA, Kent K, Pierce A, Leung C, Kang MS, Okada H, Honig L, Vonsattel JP, Kim TW (2005) Model-guided microarray implicates the retromer complex in Alzheimer's disease. Ann Neurol 58:909–919

    Article  CAS  PubMed  Google Scholar 

  • Strochlic TI, Setty TG, Sitaram A, Burd CG (2007) Grd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling. J Cell Biol 177:115–125

    Article  CAS  PubMed  Google Scholar 

  • Sturley SL, Patterson MC, Balch W, Liscum L (2004) The pathophysiology and mechanisms of NP-C disease. Biochim Biophys Acta 1685:83–87

    CAS  PubMed  Google Scholar 

  • Wang D, Guo M, Liang Z, Fan J, Zhu Z, Zang J, Zhu Z, Li X, Teng M, Niu L, Dong Y, Liu P (2005) Crystal structure of human vacuolar protein sorting protein 29 reveals a phosphodiesterase/ nuclease-like fold and two protein-protein interaction sites. J Biol Chem 280:22962–22967

    Article  CAS  PubMed  Google Scholar 

  • Wassmer T, Attar N, Bujny MV, Oakley J, Traer CJ, Cullen PJ (2007) A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci 120:45–54

    Article  CAS  PubMed  Google Scholar 

  • Westphal V, Marcusson EG, Winther JR, Emr SD, van den Hazel HB (1996) Multiple pathways for vacuolar sorting of yeast proteinase A. J Biol Chem 271:11865–11870

    Article  CAS  PubMed  Google Scholar 

  • Yu JW, Lemmon MA (2001) All Phox homology (PX) domains from Saccharomyces cerevisiae specifically recognize phosphotidylinositol 3-phosphate. J Biol Chem 276:44179–44184

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Nothwehr S, Lara-Lemus R, Zhang BY, Peter H, Arvan P (2007) Dominant-negative behavior of mammalian Vps35 in yeast requires a conserved PRLYL motif involved in retromer assembly. Traffic 8:1829–1840

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skinner, C.F., Seaman, M.N. (2009). The Role of Retromer in Neurodegenerative Disease. In: George-Hyslop, P.H.S., Mobley, W.C., Christen, Y. (eds) Intracellular Traffic and Neurodegenerative Disorders. Research and Perspectives in Alzheimer's Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87941-1_10

Download citation

Publish with us

Policies and ethics