Skip to main content

EEG Quality:The Image Acquisition Artefact

  • Chapter
  • First Online:
Book cover EEG - fMRI

Abstract

In this chapter, we focus on the artefacts that arise in the EEG during the fMRI acquisition process. Functional MRI using echo planar imaging (EPI) sequences involves the application of rapidly varying magnetic field gradients for spatial encoding of the MR signal and radiofrequency (RF) pulses for spin excitation (see the chapter “The Basics of Functional Magnetic Resonance Imaging”). Early in the implementation of EEG–fMRI, it was observed that the acquisition of an MR image results in complete obscuration of the physiological EEG (Ives et al. 1993; Allen et al. 2000). Electromagnetic induction in the circuit formed by the electrodes, leads, patient and amplifier exposed to a time-varying magnetic field causes an electromotive force. Artefacts induced in the EEG by the scanning process have a strong deterministic component, due to the preprogrammed nature of the RF and gradient switching sequence, and therefore artefact correction is generally considered a lesser problem than pulse-related artefacts (see the chapter “EEG Quality: Origin and Reduction of the EEG Cardiac-Related Artefact”). According to Faraday’s law of induction, the induced electromotive force is proportional to the time derivative of the magnetic flux (summation of the magnetic field perpendicular to the circuit plane over the area circuit), dΦ/dt, and can therefore reflect changes in the field (gradient switching, RF) or in the circuit geometry or position relative to the field due to body motion (Lemieux et al. 1997). Therefore, the combination of body motion with image acquisition artefacts can lead to random variations that represent a real challenge for artefact correction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANC:

Adaptive noise cancellation

FASTR:

FMRI artefact slice template removal

FT:

Fourier transform

IAR:

Imaging artefact reduction

ICA:

Independent component analysis

ITAS:

Interpolation–template–alignment–subtraction

LPF:

Low-pass filter

PCA:

Principal component analysis

RF:

Radiofrequency

SNR:

Signal-to-noise ratio

TDC:

Template drift compensation

TDD:

Template drift detection

References

  • Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 12(2):230–239

    Article  PubMed  CAS  Google Scholar 

  • Anami K, Mori T, Tanaka F, Kawagoe Y, Okamoto J, Yarita M, Ohnishi T, Yumoto M, Matsuda H, Saitoh O (2003) Stepping stone sampling for retrieving artifact-free electroencephalogram during functional magnetic resonance imaging. Neuroimage 19(2 Pt 1):281–295

    Article  PubMed  Google Scholar 

  • Baudewig J, Bittermann HJ, Paulus W, Frahm J (2001) Simultaneous EEG and functional MRI of epileptic activity: a case report. Clin Neurophysiol, 112: 1196–200

    Article  PubMed  CAS  Google Scholar 

  • Becker R, Ritter P, Moosmann M, Villringer A (2005) Visual evoked potentials recovered from fMRI scan periods. Hum Brain Mapp 26(3):221–230

    Article  PubMed  Google Scholar 

  • Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159

    Article  PubMed  CAS  Google Scholar 

  • Benar C, Aghakhani Y, Wang Y, Izenberg A, Al Asmi A, Dubeau F, Gotman J (2003) Quality of EEG in simultaneous EEG–fMRI for epilepsy. Clin Neurophysiol 114(3):569–580

    Article  PubMed  Google Scholar 

  • Felblinger J, Slotboom J, Kreis R, Jung B, Boesch C (1999) Restoration of electrophysiological signals distorted by inductive effects of magnetic field gradients during MR sequences. Magn Reson Med 41(4):715–721

    Article  PubMed  CAS  Google Scholar 

  • Freyer F, Becker R, Anami K, Curio G, Villringer A, Ritter P. Ultrahigh-frequency EEG during fMRI: Pushing the limits of imaging-artifact correction. Neuroimage, 2009

    Google Scholar 

  • Garreffa G, Carni M, Gualniera G, Ricci GB, Bozzao L, De Carli D, Morasso P, Pantano P, Colonnese C, Roma V, et al. (2003) Real-time MR artifacts filtering during continuous EEG/fMRI acquisition. Magn Reson Imaging 21(10):1175–1189

    Article  PubMed  CAS  Google Scholar 

  • Giraud AL, Kleinschmidt A, Poeppel D, Lund TE, Frackowiak RS, Laufs H (2007) Endogenous cortical rhythms determine cerebral specialization for speech perception and production. Neuron 56(6):1127–1134

    Article  PubMed  CAS  Google Scholar 

  • Goldman RI, Stern JM, Engel J Jr., Cohen MS (2000) Acquiring simultaneous EEG and functional MRI. Clin Neurophysiol 111(11):1974–1980

    Article  PubMed  CAS  Google Scholar 

  • Goldman RI, Stern JM, Engel J, Jr., Cohen MS (2002) Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport, 13: 2487–92

    Article  PubMed  Google Scholar 

  • Goncalves SI, de Munck JC, Pouwels PJ, Schoonhoven R, Kuijer JP, Maurits NM, Hoogduin JM, Van Someren EJ, Heethaar RM, Lopes da Silva FH. (2005) Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: Inter-subject variability. Neuroimage

    Google Scholar 

  • Grouiller F, Vercueil L, Krainik A, Segebarth C, Kahane P, David O (2007) A comparative study of different artefactartefact removal algorithms for EEG signals acquired during functional MRI. Neuroimage 38(1):124–137

    Article  PubMed  Google Scholar 

  • Hanson LG, Lund TE, Hanson CG (2007) Encoding of electrophysiology and other signals in MR images. J Magn Reson Imaging 25(5):1059–1066

    Article  PubMed  Google Scholar 

  • Hill RA, Chiappa KH, Huang-Hellinger F, Jenkins BG (1995) EEG during MR imaging: differentiation of movement artifact from paroxysmal cortical activity. Neurology, 45: 1942–3

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann A, Jager L, Werhahn KJ, Jaschke M, Noachtar S, Reiser M (2000) Electro­encephalography during functional echo-planar imagingecho-planar imaging: detection of epileptic spikes using post-processing methods. Magn Reson Med 44(5):791–798

    Article  PubMed  CAS  Google Scholar 

  • Horovitz SG, Rossion B, Skudlarski P, Gore JC (2004) Parametric design and correlational analyses help integrating fMRI and electrophysiological data during face processing. Neuroimage., 22: 1587–95

    Article  PubMed  Google Scholar 

  • Horovitz SG, Skudlarski P, Gore JC (2002) Correlations and dissociations between BOLD signal and P300 amplitude in an auditory oddball task: a parametric approach to combining fMRI and ERP. Magn Reson.Imaging, 20: 319–25

    Article  PubMed  Google Scholar 

  • Huang-Hellinger FR, Breiter HC, McCormack GM, Cohen MS, Kwong KK, Savoy RL, Weisskoff RM, Davis TL, Baker JR, Belliveau JW, et al. (1995) Simultaneous functional magnetic resonance imaging and electrophysiological recording. Human Brain Mapp 3:13–23

    Article  Google Scholar 

  • Hyvarinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw, 10: 626–34

    Article  PubMed  CAS  Google Scholar 

  • Iannetti GD, Niazy RK, Wise RG, Jezzard P, Brooks JC, Zambreanu L, Vennart W, Matthews PM, Tracey I (2005) Simultaneous recording of laser-evoked brain potentials and continuous, high-field functional magnetic resonance imaging in humans. Neuroimage 28(3):708–719

    Article  PubMed  CAS  Google Scholar 

  • Ives JR, Warach S, Schmitt F, Edelman RR, Schomer DL (1993) Monitoring the patient’s EEG during echo planar MRI. Electroencephalogr. Clin. Neurophysiol 87: 417–20

    Article  PubMed  CAS  Google Scholar 

  • Krakow K, Woermann FG, Symms MR, Allen PJ, Lemieux L, Barker GJ, Duncan JS, Fish DR (1999) EEG-triggered functional MRI of interictal epileptiform activity in patients with partial seizures. Brain, 122: 1679–88

    Article  PubMed  Google Scholar 

  • Kruggel F, Wiggins CJ, Herrmann CS, von Cramon DY (2000) Recording of the event-related potentials during functional MRI at 3.0 Tesla field strength. Magn Reson.Med., 44: 277–82

    Article  PubMed  CAS  Google Scholar 

  • Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, Krakow K (2003) EEG-correlated fMRI of human alpha activity. Neuroimage., 19: 1463–76

    Article  PubMed  CAS  Google Scholar 

  • Lemieux L, Allen PJ, Franconi F, Symms MR, Fish DR (1997) Recording of EEG during fMRI experiments: patient safety. Magn Reson Med 38(6):943–952

    Article  PubMed  CAS  Google Scholar 

  • Lemieux L, Krakow K, Fish DR (2001) Comparison of spike-triggered functional MRI BOLD activation and EEG dipole model localization. Neuroimage 14: 1097–104

    Article  PubMed  CAS  Google Scholar 

  • Mandelkow H, Halder P, Boesiger P, Brandeis D (2006) Synchronization facilitates removal of MRI artefacts from concurrent EEG recordings and increases usable bandwidth. Neuroimage 32(3):1120–1126

    Article  PubMed  CAS  Google Scholar 

  • Mantini D, Perrucci MG, Cugini S, Ferretti A, Romani GL, Del Gratta C (2007) Complete artifact removal for EEG recorded during continuous fMRI using independent component analysis. Neuroimage 34(2):598–607

    Article  PubMed  CAS  Google Scholar 

  • Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, Taskin B, Obrig H, Villringer A (2003) Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage, 20: 145–58

    Article  PubMed  Google Scholar 

  • Negishi M, Abildgaard M, Nixon T, Constable RT (2004) Removal of time-varying gradient artifacts from EEG data acquired during continuous fMRI. Clin Neurophysiol 115(9):2181–2192

    Article  PubMed  Google Scholar 

  • Niazy RK, Beckmann CF, Iannetti GD, Brady JM, Smith SM (2005) Removal of FMRI environment artifacts from EEG data using optimal basis sets. Neuroimage 28(3):720–737

    Article  PubMed  CAS  Google Scholar 

  • Opitz B, Mecklinger A, Von Cramon DY, Kruggel F (1999) Combining electrophysiological and hemodynamic measures of the auditory oddball. Psychophysiology, 36: 142–7

    Article  PubMed  CAS  Google Scholar 

  • Ritter P, Becker R, Graefe C, Villringer A (2007) Evaluating gradientgradient artifact correction of EEG data acquired simultaneously with fMRI. Magn Reson Imaging 25(6):923–932

    Article  PubMed  Google Scholar 

  • Ritter P, Freyer F, Becker R, Anami K, Curio G, Villringer A (2006) Recording of ultrafast (600 Hz) EEG oscillations with amplitudes in the nanovolt range during fMRI-acquisition periods. 14th Scientific Meeting ISMRM, Seattle, WA, USA, 6–12 May 2006

    Google Scholar 

  • Ritter P, Freyer F, Curio G, Villringer A (2008a) High frequency (600 Hz) population spikes in human EEG delineate thalamic and cortical fMRI activation sites. Neuroimage 42(2):483–490

    Article  PubMed  Google Scholar 

  • Ritter P, Moosmann M, Villringer A (2008b) Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Hum Brain Mapp 30(4):1168–1187

    Article  Google Scholar 

  • Salek-Haddadi A, Lemieux L, Merschhemke M, Friston KJ, Duncan JS, Fish DR (2003) Functional magnetic resonance imaging of human absence seizures. Ann.Neurol, 53: 663-7

    Article  PubMed  Google Scholar 

  • Salek-Haddadi A, Merschhemke M, Lemieux L, Fish DR (2002) Simultaneous EEG-Correlated Ictal fMRI. Neuroimage, 16: 32–40

    Article  PubMed  Google Scholar 

  • Schmid MC, Oeltermann A, Juchem C, Logothetis NK, Smirnakis SM (2006) Simultaneous EEG and fMRI in the macaque monkey at 4.7 Tesla. Magn Reson.Imaging., 24: 335–42

    Article  PubMed  Google Scholar 

  • Schubert R, Ritter P, Wustenberg T, Preuschhof C, Curio G, Sommer W, Villringer A (2008) Spatial attention related SEP amplitude modulations covary with BOLD signal in S1–a simultaneous EEG–fMRI study. Cereb Cortex, 18: 2686–700

    Google Scholar 

  • Seeck M, Lazeyras F, Michel CM, Blanke O, Gericke CA, Ives J, Delavelle J, Golay X, Haenggeli CA, de Tribolet N, Landis T (1998) Non-invasive epileptic focus localization using EEG-triggered functional MRI and electromagnetic tomography. Electroencephalogr.Clin.Neurophysiol 106: 508–12

    Article  CAS  Google Scholar 

  • Sijbers J, Michiels I, Verhoye M, Van Audekerke J, Van der LA, Van Dyck D (1999) Restoration of MR-induced artifacts in simultaneously recorded MR/EEG data. Magn Reson Imaging 17(9):1383–1391

    Article  PubMed  CAS  Google Scholar 

  • Symms MR, Allen PJ, Woermann FG, Polizzi G, Krakow K, Barker GJ, Fish DR, Duncan JS (1999) Reproducible localization of interictal epileptiform discharges using EEG-triggered fMRI. Phys.Med.Biol., 44: N161–N8

    Article  PubMed  CAS  Google Scholar 

  • Sommer M, Meinhardt J, Volz HP (2003) Combined measurement of event-related potentials (ERPs) and fMRI. Acta Neurobiol.Exp.(Wars.), 63: 49–53

    Google Scholar 

  • Van Audekerkea J, Peeters R, Verhoye M, Sijbers J, Van der LA (2000) Special designed RF-antenna with integrated non-invasive carbon electrodes for simultaneous magnetic resonance imaging and electroencephalography acquisition at 7T. Magn Reson Imaging 18(7):887–891

    Article  PubMed  Google Scholar 

  • Warach S, Ives JR, Schlaug G, Patel MR, Darby DG, Thangaraj V, Edelman RR, Schomer DL (1996) EEG-triggered echo-planar functional MRI in epilepsy. Neurology, 47: 89–93

    Article  PubMed  CAS  Google Scholar 

  • Wan X, Iwata K, Riera J, Kitamura M, Kawashima R (2006) Artifact reduction for simultaneous EEG/fMRI recording: adaptive FIR reduction of imaging artifacts. Clin Neurophysiol 117(3):681–692

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Daniel Margulies and Matthias Reinacher for proofreading the manuscript. This work was supported by the German Federal Ministry of Education and Research BMBF (Berlin Neuroimaging Center; Bernstein Center for Computational Neuroscience) and the German Research Foundation DFG (Berlin School of Mind and Brain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Ritter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ritter, P., Becker, R., Freyer, F., Villringer, A. (2009). EEG Quality:The Image Acquisition Artefact. In: Mulert, C., Lemieux, L. (eds) EEG - fMRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87919-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87919-0_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87918-3

  • Online ISBN: 978-3-540-87919-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics