Skip to main content

EEG: Origin and Measurement

  • Chapter
  • First Online:
EEG - fMRI

Abstract

The existence of the electrical activity of the brain (i.e. the electroencephalogram or EEG) was discovered more than a century ago by Caton. After the demonstration that the EEG could be recorded from the human scalp by Berger in the 1920s, it made a slow start before it became accepted as a method of analysis of brain functions in health and disease. It is interesting to note that this acceptance came only after the demonstration by Adrian and Mathews (1934) that the EEG, namely the alpha rhythm, was likely generated in the occipital lobes in man, and was not artefactual. However, the neuronal sources of the alpha rhythm remained undefined until the 1970s, when we demonstrated, in dog, that the alpha rhythm is generated by a dipole layer cantered at layers IV and V of the visual cortex (Lopes da Silva and Storm van Leeuwen 1977). It may be not surprising that the mechanisms of generation and the functional significance of the EEG remained controversial for a relatively long time considering the complexity of the underlying systems of neuronal generators on the one hand and the rather involved transfer of signals from the cortical surface to the scalp due to the topological and electrical properties of the volume conductor (brain, cerebrospinal fluid, skull, scalp) on the other. The EEG consists of the summed electrical activities of populations of neurons, with a modest contribution from glial cells. The neurons are excitable cells with characteristic intrinsic electrical properties, and their activity produces electrical and magnetic fields. These fields may be recorded by means of electrodes at a short distance from the sources (the local EEG or local field potentials, LFPs), or from the cortical surface (the electrocorticogram or ECoG), or at longer distances, even from the scalp (i.e. the EEG, in the most common sense). The associated MEG is usually recorded via sensors that are highly sensitive to changes in the very weak neuronal magnetic fields, which are placed at short distances around the scalp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achermann P, Borbély AA (1997) Low-frequency (<1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience 81(1):213–22

    Article  PubMed  CAS  Google Scholar 

  • Adrian ED, Mathews BHC (1934) The interpretation of potential waves in the cortex. J Physiol 81:440–71

    PubMed  CAS  Google Scholar 

  • Amzica F, Steriade M (1997) The K-complex: its slow (<1-Hz) rhythmicity and relation to delta waves. Neurology 49(4):952–9

    Article  PubMed  CAS  Google Scholar 

  • Baker SN, Kilner JM, Pinches EM, Lemon RN (1999) The role of synchrony and oscillations in the motor output. Exp Brain Res 128:109–17

    Article  PubMed  CAS  Google Scholar 

  • Berger H (1929) Ãœber des Elekrenkephalogramm des Menschen. Arch Psychiat Nervenkr 87:527–70

    Article  Google Scholar 

  • Bouyer JJ, Montaron MF, Vahnée JM, Albert MP, Rougeul A (1987) Anatomical localization of cortical beta rhythms in cat. Neuroscience 22(3):863–9

    Article  PubMed  CAS  Google Scholar 

  • Burghoff M, Sander TH, Schnabel A, Drung D, Trahms L, Curio G, Mackert BM (2004) DC-magnetoencephalography: direct measurements in a magnetically extremely-well-shielded room. Appl Phys Lett 85:6278–80

    Article  CAS  Google Scholar 

  • Buser P, Rougeul-Buser A (2005) Visual attention in behaving cats: attention shifts and sustained attention episodes are accompanied by distinct electrocortical activities. Behav Brain Res 164(1):42–51

    Article  PubMed  Google Scholar 

  • Buxhoeveden DP, Casanova MF (2002) The minicolumn hypothesis in neuroscience. Brain 125:935–51

    Article  PubMed  Google Scholar 

  • Buzsáki G (2006) Rhythms of the brain. Oxford University Press, Oxford

    Book  Google Scholar 

  • Caton R (1875) The electric currents of the brain. Br Med J 2:278

    Google Scholar 

  • Cram JR, Kohlenberg RJ, Singer M (1977) Operant control of alpha EEG and the effects of illumination and eye closure. Psychosom Med 39(1):11–8

    PubMed  CAS  Google Scholar 

  • de Munck JC, Gonçalves SI, Huijboom L, Kuijer JP, Pouwels PJ, Heethaar RM, Lopes da Silva FH (2007) The hemodynamic response of the alpha rhythm: an EEG/fMRI study. Neuroimage 35(3):1142–51

    Article  PubMed  Google Scholar 

  • Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern 60(2):121–30

    Article  PubMed  CAS  Google Scholar 

  • Favorov OV, Diamond ME (1990) Demonstration of discrete place-defined columns—­segregates—in the cat SI. J Comp Neurol 298(1):97–112

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ (2005) Origin, structure, and role of background EEG activity. Part 3. Neural frame classification. Clin Neurophysiol 116(5):1118–29

    Article  PubMed  Google Scholar 

  • Freeman WJ, van Dijk BW (1987) Spatial patterns of visual cortical fast EEG during conditioned reflex in a rhesus monkey. Brain Res 422(2):267–76

    Article  PubMed  CAS  Google Scholar 

  • Freiwald WA, Kreiter AK, Singer W (1995) Stimulus dependent inter-columnar synchronization of single unit responses in cat area 17. Neuroreport 6:2348–52

    Article  PubMed  CAS  Google Scholar 

  • Fuchs M, Wagner M, Kastner J (2007) Development of volume conductor and source models to localize epileptic foci. J Clin Neurophysiol 24(2):101–19

    Article  PubMed  Google Scholar 

  • Goldman RI, Stern JM, Engel J Jr, Cohen M (2002) Simultaneous EEG and fMRI of the alpha rhythm. NeuroReport 13(18):2487–92

    Article  PubMed  Google Scholar 

  • Gonçalves SI, de Munck JC, Pouwels PJ, Schoonhoven R, Kuijer JP, Maurits NM, Hoogduin JM, Van Someren EJ, Heethaar RM, Lopes da Silva FH (2006) Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: inter-subject variability. Neuroimage 30(1):203–13

    Article  PubMed  Google Scholar 

  • Gonçalves SI, de Munck JC, Verbunt JP, Bijma F, Heethaar RM, Lopes da Silva F (2003) In vivo measurement of the brain and skull resistivities using an EIT-based method and realistic models for the head. IEEE Trans Biomed Eng 50(6):754–67

    Article  PubMed  Google Scholar 

  • Gray CM, König P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338(6213):334–7

    Article  PubMed  CAS  Google Scholar 

  • Hämäläinen MS, Hari R, Ilmoniemi R, Knuutila J, Lounasmaa O (1993) Magnetoencephalography. Theory, instrumentation and applications to the noninvasive study of human brain function. Rev Mod Phys 65:413–97

    Article  Google Scholar 

  • Hari R, Salmelin R, Mäkelä JP, Salenius S, Helle M (1997) Magnetoencephalographic cortical rhythms. Int J Psychophysiol 26(1–3):51–62

    Article  PubMed  CAS  Google Scholar 

  • Huang TY, Cherkas PS, Rosenthal DW, Hanani M (2005) Dye coupling among satellite glial cells in mammalian dorsal root ganglia. Brain Res 1036(1–2):42–9

    Article  PubMed  CAS  Google Scholar 

  • Hughes SW, Crunelli V (2005) Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist 11(4):357–72

    Article  PubMed  Google Scholar 

  • Hughes SW, Lörincz M, Cope DW, Blethyn KL, Kékesi KA, Parri HR,Juhasz G, Crunelli V (2004) Synchronized oscillations at alpha and theta frequencies in the lateral geniculate nucleus. Neuron 42:253–68

    Article  PubMed  CAS  Google Scholar 

  • Krakow K, Allen PJ, Symms MR, Lemieux L, Josephs O, Fish DR (2000) EEG recording during fMRI experiments: image quality. Hum Brain Mapp 10:10–15

    Article  PubMed  CAS  Google Scholar 

  • Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, Krakow K (2003) EEG-correlated fMRI of human alpha activity. Neuroimage 19:1463–76

    Article  PubMed  CAS  Google Scholar 

  • Lehtelä L, Salmelin R, Hari R (1997) Evidence for reactive magnetic 10-Hz rhythm in the human auditory cortex. Neurosci Lett 222(2):111–4

    Article  PubMed  Google Scholar 

  • Lemieux L, Allen PJ, Franconi F, Symms MR, Fish DR (1997) Recording of EEG during fMRI experiments: patient safety. Magn Reson Med 38:943–52

    Article  PubMed  CAS  Google Scholar 

  • Lopes da Silva F (1991) Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr Clin Neurophysiol 79(2):81–93

    Article  PubMed  CAS  Google Scholar 

  • Lopes da Silva FH (2002) Electrical potentials. In: Ramachandran VS (ed) Encyclopedia of the human brain. Elsevier, New York, pp 147–67

    Chapter  Google Scholar 

  • Lopes da Silva FH, Storm van Leeuwen W (1977) The cortical source of the alpha rhythm. Neurosci Lett 6:237–41

    Article  PubMed  CAS  Google Scholar 

  • Lopes da Silva FH, van Rotterdam A (2005) Biophysical aspects of EEG and magnetoencephalographic generation. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography: basic principles, clinical applications and related fields, 5th edn. Lippincott, Williams & Wilkins, New York

    Google Scholar 

  • Lopes da Silva FH, van Rotterdam A, Storm van Leeuwen W, Tielen AM (1970) Dynamic characteristics of visual evoked potentials in the dog. II. Beta frequency selectivity in evoked potentials and background activity. Electroencephalogr Clin Neurophysiol 29(3):260–8

    Article  PubMed  CAS  Google Scholar 

  • Lorente de Nó R (1947) Action potential of the motoneurons of the hypoglossus nucleus. J Cell Comp Physiol 29:207–87

    Article  Google Scholar 

  • Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing patterns in model neocortical neurons. Nature 382:363–6

    Article  PubMed  CAS  Google Scholar 

  • Manshanden I, De Munck JC, Simon NR, Lopes da Silva FH (2002) Source localization of MEG sleep spindles and the relation to sources of alpha band rhythms. Clin Neurophysiol 113(12):1937–47

    Article  PubMed  Google Scholar 

  • Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, Taskin B, Obrig H, Villringer A (2003) Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage 20:145–58

    Article  PubMed  Google Scholar 

  • Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1(4):455–73

    PubMed  CAS  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701–22

    Article  PubMed  Google Scholar 

  • Munk MH, Roelfsema PR, König P, Engel AK, Singer W (1996) Role of reticular activation in the modulation of intracortical synchronization. Science 272(5259):271–4

    Article  PubMed  CAS  Google Scholar 

  • Murakami S, Okada Y (2006) Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals. J Physiol 575(3):925–36

    Article  PubMed  CAS  Google Scholar 

  • Niedermeyer E (2005) The normal EEG in the waking adult. In: Niedermeyer E, Lopes da Silva FH (eds) Electroencephalography: basic principles, clinical applications and related fields, 5th edn. Lippincott, Williams & Wilkins, New York

    Google Scholar 

  • Nunez PL (1995) Neocortical dynamics and human EEG rhythms. Oxford University Press, New York

    Google Scholar 

  • Okada YC, Wu J, Kyuhou S (1997) Genesis of MEG signals in a mammalian CNS structure. Electroenceph Clin Neurophysiol 103:474–85

    Article  PubMed  CAS  Google Scholar 

  • Paskewitz DA, Orne MT (1973) Visual effects on alpha feedback training. Science 181(97):360–3

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–57

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller G, Stancak A Jr, Neuper C (1996) Post-movement beta synchronization. A correlate of an idling motor area? Electroencephalogr Clin Neurophysiol 98:281–93

    Article  PubMed  CAS  Google Scholar 

  • Roopun AK, Middleton SJ, Cunningham MO, LeBeau FE, Bibbig A, Whittington MA, Traub RD (2006) A beta2-frequency (20–30 Hz) oscillation in nonsynaptic networks of somatosensory cortex. Proc Natl Acad Sci USA 103(42):15646–50

    Article  PubMed  CAS  Google Scholar 

  • Rougeul A, Bouyer JJ, Dedet L, Debray O (1979) Fast somato-parietal rhythms during combined focal attention and immobility in baboon and squirrel monkey. Electroencephalogr Clin Neurophysiol 46(3):310–9

    Article  PubMed  CAS  Google Scholar 

  • Rougeul-Buser A, Buser P (1997) Rhythms in the alpha band in cats and their behavioural correlates. Int J Psychophysiol 26(1–3):191–203

    Article  PubMed  CAS  Google Scholar 

  • Rush S, Driscoll DA (1968) Current distribution in the brain from surface electrodes. Anesth Analg 47:717–23

    Article  PubMed  CAS  Google Scholar 

  • Simon NR, Manshanden I, Lopes da Silva FH (2000) A MEG study of sleep. Brain Res 860(1–2):64–76

    Article  PubMed  CAS  Google Scholar 

  • Speckmann E-J, Elger CE (2005) Introduction to the neurophysiological basis of EEG and DC potentials. In: Niedermeyer E, Lopes da Silva FH (eds) Electroencephalography: basic principles, clinical applications and related fields, 5th edn. Lippincott, Williams & Wilkins, New York, pp 17–29

    Google Scholar 

  • Stennett RG (1966) Alpha amplitude and arousal: a reply to Stennett. Psychophysiology 2(4):372–76

    Article  Google Scholar 

  • Steriade M (2006) Grouping of brain rhythms in corticothalamic systems. Neuroscience 137(4):1087–106

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Contreras D, Amzica F, Timofeev I (1996) Synchronization of fast (30–40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks. J Neurosci 16(8):2788–808

    PubMed  CAS  Google Scholar 

  • Stuart GJ, Sakman B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:68–72

    Article  Google Scholar 

  • Surwillo WW (1967) The inverted-U relationship: a reply to Stennett. Psychophysiology 3(3):321–2

    Article  PubMed  CAS  Google Scholar 

  • Surwillo WW (1965) The relation of amplitude of alpha rhythm to heart rate. Psychophysiology 1(3):247–52

    Article  PubMed  CAS  Google Scholar 

  • Traub RD, Jefferys JGR, Miles R, Whittington MA, Tóth K (1994) A branching dendritic model of a rodent CA3 pyramidal neurone. J Physiol 481:79–95

    PubMed  CAS  Google Scholar 

  • Traub RD, Miles R (1991) Neuronal networks of the hippocampus. Cambridge University Press, New York

    Book  Google Scholar 

  • Vanhatalo S, Voipio J, Kaila K (2005) Full-band EEG (FbEEG): an emerging standard in electroencephalography. Clin Neurophysiol 116(1):1–8

    Article  PubMed  Google Scholar 

  • Von Helmholtz HLF (2004) Some laws concerning the distribution of electric currents in volume conductors with applications to experiments on animal electricity. Proc IEEE 92(5):868–70

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Lopes da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

da Silva, F.L. (2009). EEG: Origin and Measurement. In: Mulert, C., Lemieux, L. (eds) EEG - fMRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87919-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87919-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87918-3

  • Online ISBN: 978-3-540-87919-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics