Skip to main content

EEG–fMRI in Children with Epilepsy

  • Chapter
  • First Online:
EEG - fMRI

Abstract

Childhood epilepsies differ from adult epilepsies in aetiology, pathogenesis, seizure semiology, electroencephalography (EEG) patterns, and prognosis (Roger et al. 2005). The immature brain is more prone to developing seizures, and epileptic discharges are more frequent and less localised in children than in adults (Holmes 1997). The clinical manifestations are also age-correlated and can vary within a patient throughout the maturation process (Ben-Ari 2006). Some epileptic syndromes are seen only in infants or children, such as the West syndrome and severe myoclonic epilepsy of infancy, idiopathic occipital epilepsies and benign epilepsy with centrotemporal spikes (Roger et al. 2005). Most of our understanding of the networks involved in the generation and propagation of epileptic activity in the immature brain derives from animal models, rather than from the study of human epilepsies. The combination of EEG and fMRI, which permits the study of the haemodynamic correlates of spontaneous brain activity such as interictal epileptiform discharges (IED), provides a unique opportunity to investigate epileptogenic networks in vivo in patients with epilepsy (see the chapters “EEG–fMRI in Adults with Focal Epilepsy” and “EEG–fMRI in Idiopathic Generalised Epilepsy (Adults)”, as well as Gotman et al. 2006; Laufs and Duncan 2007). It is a noninvasive technique that can be applied serially or longitudinally to children of all ages, and it is one that could provide essential information on the maturation process and on developmental changes due to epilepsy. However, the use of EEG–fMRI in the paediatric population is associated with a host of methodological issues regarding data acquisition and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BECTS:

Benign epilepsy with centrotemporal spikes

BOLD:

Blood oxygenation level dependent

EEG:

Electroencephalography

fMRI:

Functional magnetic resonance imaging

HRF:

Haemodynamic response function

References

  • Aghakhani Y, Bagshaw AP, Benar CG, Hawco C, Andermann F, Dubeau F, Gotman J (2004) fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain 127:11271144

    Article  Google Scholar 

  • Al-Asmi A, Benar CG, Gross DW, Aghakhani Y, Andermann F, Pike B, Dubeau F, Gotman J (2003) fMRI activation in continuous and spike-triggered EEG–fMRI studies of epileptic spikes. Epilepsia 44:1328–1339

    Article  PubMed  Google Scholar 

  • Altman NR, Bernal B (2001) Brain activation in sedated children: auditory and visual functional MR imaging. Radiology 221:56–63

    Article  PubMed  CAS  Google Scholar 

  • Archer JS, Briellman RS, Abbott DF, Syngeniotis A, Wellard RM, Jackson GD (2003) Benign epilepsy with centro-temporal spikes: spike triggered fMRI shows somato-sensory cortex activity. Epilepsia 44:200–204

    Article  PubMed  Google Scholar 

  • Bell EC, Willson MC, Wilman AH, Dave S, Silverstone PH (2005) Differential effects of chronic lithium and valproate on brain activation in healthy volunteers. Hum Psychopharmacol 20: 415–424

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y (2006) Basic developmental rules and their implication for epilepsy in the immature brain. Epileptic Disord 8:91–102

    PubMed  Google Scholar 

  • Boor R, Jacobs J, Bauermann T, Scherg M, Boor S, Vucurevic G, Kutschke G, Stoeter P (2007) Combined spike-related functional MRI and multiple source analysis in the non-invasive spike localization of benign rolandic epilepsy. Clin Neurophysiol 118 (4):901–909

    Article  PubMed  CAS  Google Scholar 

  • Boor S, Vucurevic G, Pfleiderer C, Stoeter P, Kutschke G, Boor R. (2003). EEG-related functional MRI in benign childhood epilepsy with centrotemporal spikes. Epilepsia 44:688–692

    Article  PubMed  Google Scholar 

  • Born P, Leth H, Miranda MJ, Rostrup E, Stensqaard A, Peitersen B, Larsson HB, Lou HC (1998) Visual activation in infants and young children studied by functional magnetic resonance imaging. Pediatr Res 44:578–583

    Article  PubMed  CAS  Google Scholar 

  • Chiron C, Dulac O, Bulteau C, Nuttin C, Depas G, Raynaud C, Syrota A (1993) Study of regional cerebral blood flow in west syndrome. Epilepsia 34:707–715

    Article  PubMed  CAS  Google Scholar 

  • Chugani DC, Chugani HT, Muzik O, Shah JR, Shah AK, Canady A, Mangner TJ, Chakraborty PK (1998) Imaging epileptogenic tubers in children with tuberous sclerosis complex using alpha-[11C]methyl-l-tryptophan positron emission tomography. Ann Neurol 44:858–866

    Article  PubMed  CAS  Google Scholar 

  • Chugani HT (1998) A critical period of brain development: studies of cerebral glucose utilization with PET. Prev Med 27:184–188

    Article  PubMed  CAS  Google Scholar 

  • Chugani HT, Shewmon DA, Sankar R (1992) Infantile spasms: II. Lenticular nuclei and brain stem activation on positron emission tomography. Ann Neurol 31:212–219

    Article  PubMed  CAS  Google Scholar 

  • Dalla Bernardina B, Sgro V, Fejerman N (2005) Epilepsy with centro-temporal spikes and related syndomes. In: Roger J, Bureau M, Dravet C, Genton P, Tassinari CA, Wolf P (eds) Epileptic syndromes in infancy, childhood and adolescence. John Libbey Eurotext, Montrouge, pp 203–226

    Google Scholar 

  • De Tiege X, Laufs H, Boyd SG, Harkness W, Allen PJ, Clark CA, Connelly A, Cross JH (2007) EEG–fMRI in children with pharmacoresistant focal epilepsy. Epilepsia 48:385–389

    Article  PubMed  Google Scholar 

  • Dulac O (2001) What is West syndrome? Brain Dev 23: 447–452

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Williams S, Howard R (1996) Movement-related effects in fMRI time-series. Magn Res Med 35:346–355

    Article  CAS  Google Scholar 

  • Gaillard WD, Grandin CB, Xu B (2001) Developmental aspects of pediatric fMRI: considerations for image acquisition, analysis, and interpretation. Neuroimage 13:239–249

    Article  PubMed  CAS  Google Scholar 

  • Gotman J, Grova C, Bagshaw A, Kobayashi E, Aghakhani Y, Dubeau, F (2005) Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci USA 102:15236–15240

    Article  PubMed  CAS  Google Scholar 

  • Gotman J, Kobayashi E, Bagshaw AP, Benar CG, Dubeau F (2006) Combining EEG and fMRI: a multimodal tool for epilepsy research. J Magn Reson Imaging 23:906–920

    Article  PubMed  Google Scholar 

  • Hamandi K, Salek-Haddadi A, Laufs H, Liston A, Friston K, Fish DR, Duncan JS, Lemieux L (2006) EEG–fMRI of idiopathic and secondary generalized epilepsies. Neuroimage 31:1700–1710

    Article  PubMed  Google Scholar 

  • Holmes GL (1997) Epilepsy in the developing brain: lessons from the laboratory and clinic. Epilepsia 38:12–30

    Article  PubMed  CAS  Google Scholar 

  • Hrachovy RA, Frost JD (2003) Infantile epileptic encephalopathy with hypsarrhythmia (infantile spasms/west syndrome). J Clin Neurophysiol 20:408–425

    Article  PubMed  Google Scholar 

  • Jacobs J, Hawco C, Kobayashi E, Boor R, LeVan P, Stephani U, Siniatchkin M, Gotman J (2008a) Variability of the hemodynamic response function with age in children with epilepsy. Neuroimage 40:601–614

    Article  PubMed  Google Scholar 

  • Jacobs J, Kobayashi E, Boor R, Muhle H, Wolff S, Hawco C, Dubeau F, Jansen O, Stephani U, Gotman J, Siniatchkin M (2007) Hemodynamic responses to interictal epileptiform discharges in children with symptomatic epilepsy. Epilepsia 48:2068–2078

    Article  PubMed  Google Scholar 

  • Jacobs J, Rohr A, Moeller F, Boor R, Kobayashi E, Stephani U, Gotman J, Siniatchkin M (2008b) Evaluation of epileptogenic networks in children with tuberous sclerosis complex using EEG–fMRI. Epilepsia 49:816–825

    Article  PubMed  Google Scholar 

  • Kobayashi E, Bagshaw AP, Benar CG, Aghakhani Y, Andermann F, Dubeau F, Gotman J (2006a) Temporal and extratemporal BOLD responses to temporal lobe interictal spikes. Epilepsia 47:343–354

    Article  PubMed  Google Scholar 

  • Kobayashi E, Bagshaw AP, Gotman J, Dubeau F (2007) Metabolic correlates of epileptic spikes in cerebral cavernous angiomas. Epilepsy Res 73:98–103

    Article  PubMed  Google Scholar 

  • Kobayashi E, Bagshaw AP, Grova C, Gotman J, Dubeau F (2006b) Grey matter heterotopia: what EEG–fMRI can tell us about epileptogenicity of neuronal migration disorders. Brain 129:366–374

    Article  PubMed  Google Scholar 

  • Kobayashi E, Bagshaw AP, Jansen A, Andermann F, Andermann E, Gotman J, Dubeau F (2005) Intrinsic epileptogenicity in polymicrogyric cortex suggested by EEG–fMRI BOLD responses. Neurology 12:1263–1266

    Article  Google Scholar 

  • Labate A, Briellmann RS, Abbott DF, Waites AB, Jackson GD (2005) Typical childhood absence seizures are associated with thalamic activation. Epileptic Disord 7:373–377

    PubMed  CAS  Google Scholar 

  • Laufs H, Duncan JS (2007) Electroencephalography/functional MRI in human epilepsy: what it currently can and cannot. Curr Opin Neurol 20:417–423

    Article  PubMed  Google Scholar 

  • Laufs H, Lengler U, Hamandi K, Kleinschmidt A, Krakow K (2006) Linking generalized spike-and-wave discharges and resting state brain activity by using EEG/fMRI in a patient with absence seizures. Epilepsia 47:444–448

    Article  PubMed  Google Scholar 

  • Laureys S, Owen AM, Schiff ND (2004) Brain function in coma, vegetative state, and related disorders. Lancet Neurol 3:537–546

    Article  PubMed  Google Scholar 

  • Leal A, Dias A, Vieira JP, Secca M, Jordao C (2006) The BOLD effect of interictal spike activity in childhood occipital lobe epilepsy. Epilepsy 47:1536–1542

    Article  Google Scholar 

  • Leal A, Nunes S, Martins A, Secca M, Jordao C (2007) Brain mapping of epileptic activity in a case of idiopathic occipital lobe epilepsy (panayiotopoulos syndrome). Epilepsia 48:1179–1183

    Article  PubMed  Google Scholar 

  • Lemieux L, Salek-Haddadi A, Lund TE, Laufs H, Carmichael D (2007) Modelling large motion events in fMRI studies of patients with epilepsy. Magn Reson Imaging 25:894–901

    Article  PubMed  Google Scholar 

  • Lengler U, Kafadar I, Neubauer BA, Krakow K (2007) fMRI correlates of interictal epileptic activity in patients with idiopathic benign focal epilepsy of childhood. A simultaneous EEG-functional MRI study. Epilepsy Res 75:29–38

    Article  PubMed  Google Scholar 

  • Martin E, Joeri P, Loenneker T, Ekatodramis D, Vitacco D, Henning J, Marcar VL (1999) Visual processing in infants and children studied using functional MRI. Pediatr Res 46:135–140

    Article  PubMed  CAS  Google Scholar 

  • Meek JH, Firbank M, Elwell CE, Atkinson J, Braddick O, Wyatt JS (1998) Regional hemodynamic responses to visual stimulation in awake infants. Pediatr Res 43:840–843

    Article  PubMed  CAS  Google Scholar 

  • Metsähonkala L, Gaily E, Rantala H, Salmi E, Valanne L, Aarimaa T, Liukkonen E, Holopainen I, Granström ML, Erkinjuntti M, Grönroos T, Sillanpaa M (2002) Focal and global cortical hypometabolism in patients with newly diagnosed infantile spasms. Neurology 58:1646–1651

    Article  PubMed  Google Scholar 

  • Moehring J, Moeller F, Jacobs J, Siebner H, Wolff S, Jansen O, Stephani U, Siniatchkin M. (2008) The influence of sleep on BOLD response in children with epilepsy. Neurosci Lett 443:61–66

    Article  PubMed  CAS  Google Scholar 

  • Moeller F, Siebner H, Wolff S, Muhle H, Boor R, Granert O, Jansen O, Stephani U, Siniatchkin M (2008a) EEG–fMRI in children with untreated childhood absence epilepsy. Epilepsia 49:1510–1519

    Article  PubMed  Google Scholar 

  • Moeller F, Siebner H, Wolff S, Muhle H, Boor R, Granert O, Jansen O, Stephani U, Siniatchkin M (2008b) Changes in activity of striato-thalamo-cortical network precede generalized spike wave discharges. NeuroImage 39:1839–1849

    Article  PubMed  Google Scholar 

  • Morita T, Kochiyama T, Yamada H, Konishi Y, Yonekura Y, Matsumura M, Sadato N (2000) Difference in the metabolic response to photic stimulation of the lateral geniculate nucleus and the primary visual cortex of infants: a fMRI study. Neurosci Res 38:63–70

    Article  PubMed  CAS  Google Scholar 

  • Poldrack RA, Pare-Blagoev EJ, Grant PE (2002) Pediatric functional magnetic resonance imaging: progress and challenges. Top Magn Reson Imaging 13:61–70

    Article  PubMed  Google Scholar 

  • Quirk ME, Letendre AJ, Ciottone RA, Langley JF (1989) Evaluation of three psychologic interventions to reduce anxiety during MR imaging. Radiology 173:759–762

    PubMed  CAS  Google Scholar 

  • Raichle ME, Mintun MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29:449–476

    Article  PubMed  CAS  Google Scholar 

  • Richter W, Richter M (2003) The shape of the fMRI BOLD response in children and adults changes systematically with age. NeuroImage 20:1122–1131

    Article  PubMed  Google Scholar 

  • Roger J, Bureau M, Dravet C, Genton P, Tassinari CA, Wolf P (2005) Epileptic syndromes in infancy, childhood and adolescence. John Libbey Eurotext, Montrouge

    Google Scholar 

  • Rosenberg DR, Sweeney JA, Gillen JS (1997) Magnetic resonance imaging of children without sedation: preparation with simulation. J Am Acad Child Adolesc Psychiatry 36:853–859

    Article  PubMed  CAS  Google Scholar 

  • Salek-Haddadi A, Diehl B, Hamandi K, Merschhemke M, Liston A, Friston K, Duncan JS, Fish DR, Lemieux L (2006) Hemodynamic correlates of epileptiform discharges: an EEG–fMRI study of 63 patients with focal epilepsy. Brain Res 1088:148–166

    Article  PubMed  CAS  Google Scholar 

  • Schapiro MB, Schmithorst VJ, Wilke M, Byars AW, Strawsburg RH, Holland SK (2004) BOLD fMRI signal increases with age in selected brain regions in children. Neuroreport 15:2575–2578

    Article  PubMed  Google Scholar 

  • Siniatchkin M, Moeller F, Jacobs J, Stephani U, Boor R, Wolff S, Jansen O, Siebner H, Scherg M (2007a) Spatial filters and automated spike detection based on brain topographies improve sensitivity of EEG–fMRI studies in focal epilepsy. Neuroimage 37:834–843

    Article  PubMed  Google Scholar 

  • Siniatchkin M, van Baalen A, Jacobs J, Moeller F, Moehring J, Boor R, Wolff S, Jansen O, Stephani U (2007b) Different neuronal networks are associated with spikes and slow activity in hypsarrhythmia. Epilepsia 48:2312–2321

    PubMed  Google Scholar 

  • Yamada H, Sadato N, Konishi Y, Muramoto S, Kimura K, Tanaka M, Yonekura Y, Ishii Y, Ithoh H (2000) A milestone for normal development of the infantile brain detected by functional MRI. Neurology 55:218–223

    Article  PubMed  CAS  Google Scholar 

  • Zijlmans M, Huiskamp G, Hersevoort M, Seppenwoolde JH, van Huffelen AC, Leijten FSS (2007) EEG–fMRI in the preoperative work-up for epilepsy surgery. Brain 130:2343–2353

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Siniatchkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siniatchkin, M., Dubeau, F. (2009). EEG–fMRI in Children with Epilepsy. In: Mulert, C., Lemieux, L. (eds) EEG - fMRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87919-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87919-0_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87918-3

  • Online ISBN: 978-3-540-87919-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics