Skip to main content

EEG–fMRI in Adults with Focal Epilepsy

  • Chapter
  • First Online:
EEG - fMRI

Abstract

The application of EEG-correlated fMRI (EEG–fMRI) in adults with focal epilepsy has two principal aims: to improve our understanding of the generators of epileptiform activity and to improve the surgical treatment of epilepsy. EEG–fMRI, except in unusual circumstances (Salek-Haddadi et al. 2003; Kobayashi et al. 2006d), has been used to study scalp interictal epileptiform discharges (IEDs). The relative abundance of IEDs (and the lack of associated clinical manifestations) drove the initial development of EEG–fMRI with a view to studying the fMRI signal changes associated with epileptic activity (Ives et al. 1993; Hill et al. 1995; Huang-Hellinger et al. 1996). Previously, fMRI had been employed to study the haemodynamic correlates of seizures, relying on visual observation of the patient for interpretation of the BOLD signal changes. Ictal BOLD changes are, however, generally widespread, long lasting and difficult to interpret, particularly without concurrent EEG (Jackson et al. 1994; Detre et al. 1995, 1996; Krings et al. 2000; see Salek-Haddadi et al. 2003 for review). Analysis of scalp IEDs is not without its problems. Scalp IEDs may reflect propagated activity rather than the source. Furthermore, even when the scalp IEDs are representative of the source or sources, there are no unique solutions to the generator location problem, and such solutions depend upon critical assumptions (such as the number of sources). EEG–fMRI is free from such assumptions and may therefore give a more accurate indication of the source or sources of IEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1Arterial spin labelling EEG–fMRI has also been demonstrated (Stefanovic et al. 2005; Hamandi et al. 2008).

References

  • Aguirre GK, Zarahn E, & D’esposito M (1998), “The variability of human, BOLD hemodynamic responses”, Neuroimage. 8. 4. 360–369

    Article  PubMed  CAS  Google Scholar 

  • Al-Asmi A, Benar CG, Gross DW, Khani YA, Andermann F, Pike B, Dubeau F, Gotman J (2003) fMRI activation in continuous and spike-triggered EEG–fMRI studies of epileptic spikes. Epilepsia 44:1328–1339

    Article  PubMed  Google Scholar 

  • Alarcon G, Garcia Seoane JJ, Binnie CD, Martin Miguel MC, Juler J, Polkey CE, Elwes RD, Ortiz Blasco JM (1997) Origin and propagation of interictal discharges in the acute electrocorticogram. Implications for pathophysiology and surgical treatment of temporal lobe epilepsy. Brain 120 (Pt 12):2259–2282

    Article  PubMed  Google Scholar 

  • Barbarosie M, Avoli M (1997) CA3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures. J Neurosci 17:9308–9314

    PubMed  CAS  Google Scholar 

  • Benar C, Aghakhani Y, Wang Y, Izenberg A, Al-Asmi A, Dubeau F, & Gotman J (2003), “Quality of EEG in simultaneous EEG-fMRI for epilepsy”, Clin.Neurophysiol. 114. 3. 569–580

    Article  PubMed  Google Scholar 

  • Benar CG, Grova C, Kobayashi E, Bagshaw AP, Aghakhani Y, Dubeau F, Gotman J (2006) EEG–fMRI of epileptic spikes: concordance with EEG source localization and intracranial EEG. Neuroimage 30:1161–1170

    Article  PubMed  Google Scholar 

  • Blume WT, Borghesi JL, Lemieux JF (1993) Interictal indices of temporal seizure origin. Ann Neurol 34:703–709

    Article  PubMed  CAS  Google Scholar 

  • Blume WT, Holloway GM, Wiebe S (2001a) Temporal epileptogenesis: Localizing value of scalp and subdural interictal and ictal EEG data. Epilepsia 42:508–514

    Article  PubMed  CAS  Google Scholar 

  • Blume WT, Luders HO, Mizrahi E, Tassinari C, van Emde BW, Engel J Jr (2001b) Glossary of descriptive terminology for ictal semiology: report of the ILAE task force on classification and terminology. Epilepsia 42(9):1212–1218

    Article  PubMed  CAS  Google Scholar 

  • Detre JA, Alsop DC, Aguirre GK, & Sperling MR (1996), “Coupling of cortical and thalamic ictal activity in human partial epilepsy: demonstration by functional magnetic resonance imaging”, Epilepsia. 37. 7. 657–661

    Article  PubMed  CAS  Google Scholar 

  • Detre JA, Sirven JI, Alsop DC, O’Connor MJ, & French JA (1995), “Localization of subclinical ictal activity by functional magnetic resonance imaging: correlation with invasive monitoring”, Ann.Neurol. 38. 4. 618–624

    Article  PubMed  CAS  Google Scholar 

  • de Curtis M, Avanzini G (2001) Interictal spikes in focal epileptogenesis. Prog Neurobiol 63: 541–567

    Article  PubMed  Google Scholar 

  • Di Bonaventura BC, Carnfi M, Vaudano AE, Pantano P, Garreffa G, Le PE, Maraviglia B, Bozzao L, Manfredi M, Prencipe M, Giallonardo AT (2006a) Ictal hemodynamic changes in late-onset Rasmussen encephalitis. Ann Neurol 59(2):432–433

    Article  PubMed  Google Scholar 

  • Di Bonaventura BC, Vaudano AE, Carni M, Pantano P, Nucciarelli V, Garreffa G, Maraviglia B, Prencipe M, Bozzao L, Manfredi M, Giallonardo AT (2006b) EEG/fMRI study of ictal and interictal epileptic activity: Methodological issues and future perspectives in clinical practice. Epilepsia 47(Suppl 5):52–58

    Article  PubMed  Google Scholar 

  • Federico P, Archer JS, Abbott DF, Jackson GD (2005) Cortical/subcortical BOLD changes associated with epileptic discharges: an EEG–fMRI study at 3 T. Neurology 64:1125–1130

    Article  PubMed  Google Scholar 

  • Gholipour A, Kehtarnavaz N, Briggs R, Devous M, & Gopinath K (2007), “Brain functional localization: a survey of image registration techniques”, IEEE Trans.Med.Imaging. 26. 4. 427–451

    Article  PubMed  Google Scholar 

  • Gholipour A, Kehtarnavaz N, Briggs RW, Gopinath KS, Ringe W, Whittemore A, Cheshkov S, & Bakhadirov K (2008a), “Validation of non-rigid registration between functional and anatomical magnetic resonance brain images”, IEEE Trans.Biomed.Eng. 55. 2 Pt 1. 563–571

    Article  PubMed  Google Scholar 

  • Gholipour A, Kehtarnavaz N, Gopinath K, Briggs R, & Panahi I (2008b), “Average field map image template for Echo-Planar image analysis”, Conf.Proc.IEEE Eng Med.Biol.Soc. 2008. 94–97

    Google Scholar 

  • Gotman J, Grova C, Bagshaw A, Kobayashi E, Aghakhani Y, Dubeau F (2005) Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci USA 102(42):15236–15240

    Article  PubMed  CAS  Google Scholar 

  • Gregory RP, Oates T, Merry RT (1993) Electroencephalogram epileptiform abnormalities in candidates for aircrew training. Electroencephalogr Clin Neurophysiol 86:75–77

    Article  PubMed  CAS  Google Scholar 

  • Hajnal JV, Myers R, Oatridge A, Schwieso JE, Young IR, & Bydder GM (1994), “Artifacts due to stimulus correlated motion in functional imaging of the brain”, Magn Reson.Med. 31. 3. 283–291

    Article  PubMed  CAS  Google Scholar 

  • Hamandi K, Powell HW, Laufs H, Symms MR, Barker GJ, Parker GJ, Lemieux L, & Duncan JS (2008), “Combined EEG-fMRI and tractography to visualise propagation of epileptic activity”, J. Neurol.Neurosurg.Psychiatry. 79. 5. 594–597

    Article  PubMed  CAS  Google Scholar 

  • Herrendorf G, Steinhoff BJ, Kolle R, Baudewig J, Waberski TD, Buchner H, Paulus W (2000) Dipole-source analysis in a realistic head model in patients with focal epilepsy. Epilepsia 41:71–80

    Article  PubMed  CAS  Google Scholar 

  • Hill RA, Chiappa KH, Huang-Hellinger F, & Jenkins BG (1995), “EEG during MR imaging: differentiation of movement artifact from paroxysmal cortical activity”, Neurology. 45. 10: 1942–1943

    Article  PubMed  CAS  Google Scholar 

  • Huang-Hellinger F, Hans C, McCormack G, Cohen M, Kwong KK, Sutton JP, Savoy RL, Weisskoff RM, Davis TL, Baker JR, Belliveau JW, Rosen BR (1995), “Simultaneous functional magnetic resonance imaging and electrophysiological recording”, Hum Brain Mapp. 3:13–23

    Google Scholar 

  • Ives JR, Warach S, Schmitt F, Edelman RR, & Schomer DL (1993), “Monitoring the patient’s EEG during echo planar MRI”, Electroencephalogr.Clin.Neurophysiol. 87. 6. 417–420

    Article  PubMed  CAS  Google Scholar 

  • Jackson GD, Connelly A, Cross JH, Gordon I, & Gadian DG (1994), “Functional magnetic resonance imaging of focal seizures”, Neurology. 44. 5. 850–856

    Article  PubMed  CAS  Google Scholar 

  • Josephs O, Turner R, Friston K (1997), “Event-related fMRI”, Hum Brain Mapp. 5: 243–248

    Google Scholar 

  • Kazemi NJ, So EL, Mosewich RK, O’Brien TJ, Cascino GD, Trenerry MR, Sharbrough FW (1997) Resection of frontal encephalomalacias for intractable epilepsy: Outcome and prognostic factors. Epilepsia 38:670–677

    Article  PubMed  CAS  Google Scholar 

  • King D, Spencer S (1995) Invasive electroencephalography in mesial temporal lobe epilepsy. J Clin Neurophysiol 12:32–45

    PubMed  CAS  Google Scholar 

  • Kobayashi E, Hawco CS, Grova C, Dubeau F, Gotman J (2006a) Widespread and intense BOLD changes during brief focal electrographic seizures. Neurology 66(7):1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi E, Bagshaw AP, Benar CG, Aghakhani Y, Andermann F, Dubeau F, Gotman J (2006b) Temporal and extratemporal BOLD responses to temporal lobe interictal spikes. Epilepsia 47:343–354

    Article  PubMed  Google Scholar 

  • Kobayashi E, Bagshaw AP, Gotman J, Dubeau F (2007) Metabolic correlates of epileptic spikes in cerebral cavernous angiomas. Epilepsy Res 73:98–103

    Article  PubMed  Google Scholar 

  • Kobayashi E, Bagshaw AP, Grova C, Gotman J, Dubeau F (2006c) Grey matter heterotopia: what EEG–fMRI can tell us about epileptogenicity of neuronal migration disorders. Brain 129:366–374

    Article  PubMed  Google Scholar 

  • Kobayashi E, Bagshaw AP, Jansen A, Andermann F, Andermann E, Gotman J, Dubeau F (2005) Intrinsic epileptogenicity in polymicrogyric cortex suggested by EEG–fMRI BOLD responses. Neurology 64:1263–1266

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi E, Hawco CS, Grova C, Dubeau F, Gotman J (2006d) Widespread and intense BOLD changes during brief focal electrographic seizures. Neurology 66:1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Krakow K, Woermann FG, Symms MR, Allen PJ, Lemieux L, Barker GJ, Duncan JS, Fish DR (1999) EEG-triggered functional MRI of interictal epileptiform activity in patients with partial seizures. Brain 122(Pt 9):1679–1688

    Article  PubMed  Google Scholar 

  • Krings T, Topper R, Reinges MH, Foltys H, Spetzger U, Chiappa KH, Gilsbach JM, & Thron A (2000), “Hemodynamic changes in simple partial epilepsy: a functional MRI study”, Neurology. 54. 2. 524–527

    Article  PubMed  CAS  Google Scholar 

  • Lai S, Hopkins AL, Haacke EM, Li D, Wasserman BA, Buckley P, Friedman L, Meltzer H, Hedera P, & Friedland R (1993), “Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the motor cortex at 1.5T: preliminary results”, Magn Reson.Med. 30. 3. 387–392

    Article  PubMed  CAS  Google Scholar 

  • Laufs H, Hamandi K, Salek-Haddadi A, Kleinschmidt AK, Duncan JS, Lemieux L (2007) Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions. Hum Brain Mapp 28:1023–1032

    Article  PubMed  Google Scholar 

  • Laufs H, Hamandi K, Walker MC, Scott C, Smith S, Duncan JS, Lemieux L (2006a) EEG–fMRI mapping of asymmetrical delta activity in a patient with refractory epilepsy is concordant with the epileptogenic region determined by intracranial EEG. Magn Reson Imaging 24:367–371

    Article  PubMed  Google Scholar 

  • Laufs H, Lengler U, Hamandi K, Kleinschmidt A, Krakow K (2006b) Linking generalized spike-and-wave discharges and resting state brain activity by using EEG/fMRI in a patient with absence seizures. Epilepsia 47:444–448

    Article  PubMed  Google Scholar 

  • Lazeyras F, Blanke O, Zimine I, Delavelle J, Perrig SH, Seeck M (2000) MRI, (1)H-MRS, and functional MRI during and after prolonged nonconvulsive seizure activity. Neurology 55:1677–1682

    Article  PubMed  CAS  Google Scholar 

  • Lemieux L, Salek-haddadi A, Josephs O, Allen P, Toms N, Scott C, Krakow K, Turner R, & Fish DR (2001), “Event-related fMRI with simultaneous and continuous EEG: description of the method and initial case report”, Neuroimage. 14. 3. 780–787

    Article  PubMed  CAS  Google Scholar 

  • Lemieux L, Salek-haddadi A, Lund TE, Laufs H, Carmichael D (2007) Modelling large motion events in fMRI studies of patients with epilepsy. Magn Reson Imaging 25(6):894–901

    Article  PubMed  Google Scholar 

  • Lemieux L, Laufs H, Carmichael D, Paul JS, Walker MC, Duncan JS (2008) Noncanonical spike-related BOLD responses in focal epilepsy. Hum Brain Mapp 29:329–345

    Article  PubMed  Google Scholar 

  • Liu Y, Yang T, Yang X, Liu I, Liao W, Chen H, Zhou D (2008) EEG–fMRI study of the interictal epileptic activity in patients with partial epilepsy. J Neurol Sci 268(1–2):117–123

    Article  PubMed  Google Scholar 

  • Liston AD, De Munck JC, Hamandi K, Laufs H, Ossenblok P, Duncan JS, & Lemieux L (2006), “Analysis of EEG-fMRI data in focal epilepsy based on automated spike classification and Signal Space Projection”, Neuroimage. 31. 3. 1015–1024

    Article  PubMed  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  PubMed  CAS  Google Scholar 

  • Lund TE, Norgaard MD, Rostrup E, Rowe JB, & Paulson OB (2005), “Motion or activity: their role in intra- and inter-subject variation in fMRI”, Neuroimage. 26. 3. 960–964

    Article  PubMed  Google Scholar 

  • Marsan CA, Zivin LS (1970) Factors related to the occurrence of typical paroxysmal abnormalities in the EEG records of epileptic patients. Epilepsia 11:361–381

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto H, Marsan CA (1964) Cortical cellular phenomena in experimental epilepsy: interictal manifestations. Exp Neurol 9:286–304

    Article  PubMed  CAS  Google Scholar 

  • McCormick DA, Contreras D (2001) On the cellular and network bases of epileptic seizures. Annu Rev Physiol 63:815–846

    Article  PubMed  CAS  Google Scholar 

  • McGonigal A, Bartolomei F, Regis J, Guye M, Gavaret M, Trebuchon-Da Fonseca A, Dufour H, Figarella-Branger D, Girard N, Peragut JC, Chauvel P (2007) Stereoelectroencephalography in presurgical assessment of MRI-negative epilepsy. Brain 130:3169–3183

    Article  PubMed  Google Scholar 

  • Northoff G, Walter M, Schulte RF, Beck J, Dydak U, Henning A, Boeker H, Grimm S, Boesiger P (2007) GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat Neurosci 10:1515–1517

    Article  PubMed  CAS  Google Scholar 

  • Palmer CA, Geyer JD, Keating JM, Gilliam F, Kuzniecky RI, Morawetz RB, Bebin EM (1999) Rasmussen’s encephalitis with concomitant cortical dysplasia: the role of GluR3. Epilepsia 40:242–247

    Article  PubMed  CAS  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682

    Article  PubMed  CAS  Google Scholar 

  • Rodionov R, De Martino F, Laufs H, Carmichael DW, Formisano E, Walker M, Duncan JS, Lemieux L (2007) Independent component analysis of interictal fMRI in focal epilepsy: Comparison with general linear model-based EEG-correlated fMRI. Neuroimage 38:488–500

    Article  PubMed  CAS  Google Scholar 

  • Rosenow F, Luders H (2001) Presurgical evaluation of epilepsy. Brain 124:1683–1700

    Article  PubMed  CAS  Google Scholar 

  • Salek-Haddadi A, Diehl B, Hamandi K, Merschhemke M, Liston A, Friston K, Duncan JS, Fish DR, Lemieux L (2006) Hemodynamic correlates of epileptiform discharges: An EEG–fMRI study of 63 patients with focal epilepsy. Brain Res 1088:148–166

    Article  PubMed  CAS  Google Scholar 

  • Salek-haddadi A, Lemieux L, Merschhemke M, Friston KJ, Duncan JS, Fish DR (2003) Functional magnetic resonance imaging of human absence seizures. Ann Neurol 53(5):663–667

    Article  PubMed  Google Scholar 

  • Salek-haddadi A, Mayer T, Hamandi K, Symms M, Josephs O, Fluegel D, Woermann F, Richardson MP, Noppeney U, Wolf P, Koepp MJ (2008) Imaging seizure activity: a combined EEG/EMG–fMRI study in reading epilepsy. Epilepsia 50(2):256–264

    Article  PubMed  Google Scholar 

  • Salek-haddadi A, Merschhemke M, Lemieux L, Fish DR (2002) Simultaneous EEG-correlated ictal fMRI. Neuroimage 16(1):32–40

    Article  PubMed  Google Scholar 

  • Seeck M, Lazeyras F, Michel CM, Blanke O, Gericke CA, Ives J, Delavelle J, Golay X, Haenggeli CA, de TN, & Landis T (1998), “Non-invasive epileptic focus localization using EEG-triggered functional MRI and electromagnetic tomography”, Electroencephalogr.Clin.Neurophysiol. 106. 6. 508–512

    Article  PubMed  CAS  Google Scholar 

  • Schulz R, Luders HO, Hoppe M, Tuxhorn I, May T, Ebner A (2000) Interictal EEG and ictal scalp EEG propagation are highly predictive of surgical outcome in mesial temporal lobe epilepsy. Epilepsia 41:564–570

    Article  PubMed  CAS  Google Scholar 

  • Schwartz TH, Bazil CW, Walczak TS, Chan S, Pedley TA, Goodman RR (1997) The predictive value of intraoperative electrocorticography in resections for limbic epilepsy associated with mesial temporal sclerosis. Neurosurgery 40:302–309; discussion 309–311

    Article  PubMed  CAS  Google Scholar 

  • Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9:569–577

    Article  PubMed  CAS  Google Scholar 

  • Stefan H, Hummel C, Scheler G, Genow A, Druschky K, Tilz C, Kaltenhauser M, Hopfengartner R, Buchfelder M, Romstock J (2003) Magnetic brain source imaging of focal epileptic activity: A synopsis of 455 cases. Brain 126:2396–2405

    Article  PubMed  CAS  Google Scholar 

  • Stefanovic B, Warnking JM, Kobayashi E, Bagshaw AP, Hawco C, Dubeau F, Gotman J, & Pike GB (2005), “Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges”, Neuroimage. 28. 1. 205–215

    Article  PubMed  Google Scholar 

  • Sykes JB (ed) (1982) The concise Oxford dictionary, 7th edn. Clarendon, Oxford

    Google Scholar 

  • Tao JX, Baldwin M, Hawes-Ebersole S, Ebersole JS (2007) Cortical substrates of scalp EEG epileptiform discharges. J Clin Neurophysiol 24:96–100

    Article  PubMed  Google Scholar 

  • Tyvaert L, Hawco C, Kobayashi E, LeVan P, Dubeau F, Gotman J (2008) Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG–fMRI study. Brain 131(Pt 8):2042–2060

    Article  PubMed  CAS  Google Scholar 

  • Widdess-Walsh P, Jeha L, Nair D, Kotagal P, Bingaman W, Najm I (2007) Subdural electrode analysis in focal cortical dysplasia: predictors of surgical outcome. Neurology 69:660–667

    Article  PubMed  CAS  Google Scholar 

  • Zijlmans M, Huiskamp G, Hersevoort M, Seppenwoolde JH, van Huffelen AC, & Leijten FS (2007), “EEG-fMRI in the preoperative work-up for epilepsy surgery”, Brain. 130. Pt 9. 2343–2353

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew C. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walker, M.C., Chaudhary, U.J., Lemieux, L. (2009). EEG–fMRI in Adults with Focal Epilepsy. In: Mulert, C., Lemieux, L. (eds) EEG - fMRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87919-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87919-0_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87918-3

  • Online ISBN: 978-3-540-87919-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics