Skip to main content

Basis-Independent Polynomial Division Algorithm Applied to Division in Lagrange and Bernstein Basis

  • Conference paper
  • 1353 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5081))

Abstract

Division algorithms for univariate polynomials represented with respect to Lagrange and Bernstein basis are developed. These algorithms are obtained by abstracting from the classical polynomial division algorithm for polynomials represented with respect to the usual power basis. It is shown that these algorithms are quadratic in the degrees of their inputs, as in the power basis case.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amiraslani, A.: Dividing polynomials when you only know their values. In: Gonzalez-Vega, L., Recio, T. (eds.) Proceedings of Encuentros de Álgebra Computacional y Aplicaciones (EACA) 2004, pp. 5–10 (2004), http://www.orcca.on.ca/TechReports/2004/TR-04-01.html

  2. Amiraslani, A.: New Algorithms for Matrices, Polynomials and Matrix Polynomials. PhD thesis, University of Western Ontario, London, Ontario, Canada (2006)

    Google Scholar 

  3. Aruliah, D.A., Corless, R.M., Gonzalez-Vega, L., Shakoori, A.: Geometric applications of the bezout matrix in the lagrange basis. In: SNC 2007: Proceedings of the 2007 international workshop on Symbolic-numeric computation, pp. 55–64. ACM, New York (2007)

    Google Scholar 

  4. Aruliah, D.A., Corless, R.M., Shakoori, A., Gonzalez-Vega, L., Rua, I.F.: Computing the topology of a real algebraic plane curve whose equation is not directly available. In: SNC 2007: Proceedings of the 2007 international workshop on Symbolic-numeric computation, pp. 46–54. ACM Press, New York (2007)

    Google Scholar 

  5. Barnett, S.: Division of generalized polynomials using the comrade matrix. Linear Algebra Appl. 60, 159–175 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barnett, S.: Euclidean remainders for generalized polynomials. Linear Algebra Appl. 99, 111–122 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Barnett, S.: Polynomials and linear control systems. Monographs and Textbooks in Pure and Applied Mathematics, vol. 77. Marcel Dekker Inc., New York (1983)

    MATH  Google Scholar 

  8. Bini, D.A., Gemignani, L., Winkler, J.R.: Structured matrix methods for CAGD: an application to computing the resultant of polynomials in the Bernstein basis. Numer. Linear Algebra Appl. 12(8), 685–698 (2005)

    Article  MathSciNet  Google Scholar 

  9. Bostan, A., Schost, É.: Polynomial evaluation and interpolation on special sets of points. J. Complexity 21(4), 420–446 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cheng, H., Labahn, G.: On computing polynomial GCDs in alternate bases. In: ISSAC 2006, pp. 47–54. ACM, New York (2006)

    Chapter  Google Scholar 

  11. Corless, R.: Generalized companion matrices in the lagrange basis. In: Gonzalez-Vega, L., Recio, T. (eds.) Proceedings of Encuentros de Álgebra Computacional y Aplicaciones (EACA 2004), pp. 317–322 (2004), http://www.apmaths.uwo.ca/~rcorless/frames/PAPERS/PABV/EACA2004Corless.pdf

  12. Diaz-Toca, G.M., Gonzalez-Vega, L.: Barnett’s theorems about the greatest common divisor of several univariate polynomials through Bezout-like matrices. J. Symbolic Comput. 34(1), 59–81 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Farouki, R.T., Goodman, T.N.T.: On the optimal stability of the Bernstein basis. Math. Comp. 65(216), 1553–1566 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gemignani, L.: Manipulating polynomials in generalized form. Technical Report TR-96-14, Università di Pisa, Departmento di Informatica, Corso Italia 40, 56125 Pisa, Italy (December 1996)

    Google Scholar 

  15. Goldman, R.: Pyramid Algorithms: A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling, 1st edn. The Morgan Kaufmann Series in Computer Graphics. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  16. Mani, V., Hartwig, R.E.: Generalized polynomial bases and the Bezoutian. Linear Algebra Appl. 251, 293–320 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Maroulas, J., Barnett, S.: Greatest common divisor of generalized polynomial and polynomial matrices. Linear Algebra Appl. 22, 195–210 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  18. Stetter, H.J.: Numerical polynomial algebra. Society for Industrial and Applied Mathematics. SIAM, Philadelphia (2004)

    MATH  Google Scholar 

  19. Tsai, Y.-F., Farouki, R.T.: Algorithm 812: BPOLY: An object-oriented library of numerical algorithms for polynomials in Bernstein form. ACM Transactions on Mathematical Software 27(2), 267–296 (2001)

    Article  MATH  Google Scholar 

  20. Vries-Baayens, A.: CAD product data exchange: conversions for curves and surfaces. PhD thesis, Delft University (1991)

    Google Scholar 

  21. Winkler, F.: Polynomial algorithms in computer algebra. In: Texts and monographs in symbolic computation. Springer, Heidelberg (1996)

    Google Scholar 

  22. Winkler, J.R.: A resultant matrix for scaled Bernstein polynomials. Linear Algebra Appl. 319(1-3), 179–191 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Winkler, J.R.: Properties of the companion matrix resultant for Bernstein polynomials. In: Uncertainty in geometric computations. Kluwer Internat. Ser. Engrg. Comput. Sci., vol. 704, pp. 185–198. Kluwer Acad. Publ., Boston (2002)

    Google Scholar 

  24. Winkler, J.R.: A companion matrix resultant for Bernstein polynomials. Linear Algebra Appl. 362, 153–175 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Deepak Kapur

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Minimair, M. (2008). Basis-Independent Polynomial Division Algorithm Applied to Division in Lagrange and Bernstein Basis. In: Kapur, D. (eds) Computer Mathematics. ASCM 2007. Lecture Notes in Computer Science(), vol 5081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87827-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87827-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87826-1

  • Online ISBN: 978-3-540-87827-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics