Advertisement

Which Symmetric Homogeneous Polynomials Can Be Proved Positive Semi-definite by Difference Substitution Method?

  • Liangyu Chen
  • Zhenbing Zeng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5081)

Abstract

Recently a method based on substitution of difference of variables has been developed by Yang [12] for verifying the positive semi-definiteness of homogeneous polynomials. In this paper, we investigate the structure of the cone formed by all symmetric homogeneous polynomials whose positive semi-definiteness can proven by difference substitution method.

Keywords

Homogeneous symmetric polynomial Positive Semi- Definiteness Difference Substitution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertsekas, D.P., Nedić, A., Ozdaglar, A.E.: Convex analysis and optimization, pp. 25–45. Athena Scientific and Tsinghua University Press (2006)Google Scholar
  2. 2.
    Chen, S.L., Yao, Y.: Schur Subspace of Real Symmetric Forms and Application. Acta Mathematica Sinica, Chinese Series 50, 1331–1348 (2007)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Chernikova, N.V.: Algorithm for finding a general formula for the non-negative solutions of a system of linear equations. U.S.S.R Computational Mathematics and Mathematical Physics 4, 151–158 (1964)zbMATHCrossRefGoogle Scholar
  4. 4.
    Chernikova, N.V.: Algorithm for finding a general formula for the non-negative solutions of a system of linear inequalities. U.S.S.R Computational Mathematics and Mathematical Physics 5, 228–233 (1965)zbMATHCrossRefGoogle Scholar
  5. 5.
    Chernikova, N.V.: Algorithm for discovering the set of all the solutions of a linear programming problem. U.S.S.R Computational Mathematics and Mathematical Physics 8, 282–293 (1968)zbMATHCrossRefGoogle Scholar
  6. 6.
    Fernández, F., Quinton, P.: Extension of Chernikova’s algorithm for solving general mixed linear programming problems, Technical Report 437, IRISA-Rennes, France (1988)Google Scholar
  7. 7.
    Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn., pp. 57–59. Cambridge University Press, Cambridge (1952)zbMATHGoogle Scholar
  8. 8.
    Huang, F.J., Chen, S.L.: Schur partition for symmetric ternary forms and readable proof to inequalities. In: ISSAC 2005, Beijing, China, pp. 185–192 (2005)Google Scholar
  9. 9.
    Rabl, T.: Volume calculation and estimation of parameterized integer polytopes, Diploma Thesis, Universität Passau, German (2006)Google Scholar
  10. 10.
    Wilde, D.K.: A library for doing polyhedral operations, Technical Report 785, IRISA-Rennes, France (1993)Google Scholar
  11. 11.
    Verge, H.L.: A note on Chernikova’s algorithm, Technical Report 635, IRISA-Rennes, France (1994)Google Scholar
  12. 12.
    Yang, L.: Solving harder problems with lesser mathematics. In: Ju, C., Korea, S., Chu, S.-C., et al. (eds.) ATCM 2005, pp. 37–46. ATCM Inc., Blacksburg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Liangyu Chen
    • 1
  • Zhenbing Zeng
    • 1
  1. 1.Software Engineering InstituteEast China Normal UniversityShanghaiChina

Personalised recommendations