Advertisement

An Efficient Fourth Order Implicit Runge-Kutta Algorithm for Second Order Systems

  • Basem S. Attili
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5081)

Abstract

We will present an algorithmic approach to the implementation of a fourth order two stage implicit Runge-Kutta method to solve periodic second order initial value problems. The systems involved will be solved using some type of factorization that usually involves both complex and real arithmetic. We will consider the real type case which will be efficient and leads to a system that is one fourth the size of similar systems using normal implicit Runge-Kutta method. We will present some numerical examples to show the efficiency of the method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Attili, B., Elgindi, M., Elgebeily, M.: Initial Value Methods for the Eigenelements of Singular Two-Point Boundary Value Problems, AJSE, 22(2C), pp. 67–77 (1997)Google Scholar
  2. 2.
    Attili, B., Furati, K., Syam, M.: An Efficient Implicit Runge-Kutta Method for Second Order Systems. Applied Math. Comput. 178, 229–238 (2006)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Burder, J.: Linearly Implicit Runge-Kutta Methods Based on Implicit Runge-Kutta Methods. Appl. Numer. Math. 13, 33–40 (1993)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Butcher, J., Chartier, P.: The Effective Order of Singly-Implicit Runge-Kutta Methods. Numer. Algorithms 20, 269–284 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Carpenter, M.H., Kennedy, C.A., Bij, H., Viken, S.A., Vatsa, V.N.: Fourth-order Runge-Kutta schemes for fluid mechanics applications. J. Sci. Comput. 25, 157–194 (2005)MathSciNetGoogle Scholar
  6. 6.
    Cash, J.: High Order P-stable Formulae for Periodic Initial Value Problems. Numer. Math. 37, 355–370 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cash, J.: Efficient P-stable Methods for Periodic Initial Value Problems. BIT 24, 252–284 (1984)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Chawla, M.: Unconditionally Stable Noumerov-Type Methods for Second Order Differential Equations. BIT 23, 541–552 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cooper, J., Butcher, J.: An Iterative Scheme for Implicit Runge-Kutta Methods. IMA J. Numer. Anal. 3, 127–140 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    de-Swart, J., Soderlind, G.: On the Construction of Error Estimators for Implicit Runge-Kutta Methods. J. Comput. Appl. Math. 86, 347–358 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ehle, B., Picel, Z.: Two Parameter Arbitrary Order Exponential Approximations for Stiff Equations. Math. Comp. 29, 501–511 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Galdwell, I., Wang, J.: Iterations and Predictors for Second Order Systems. In: Ames, W.F. (ed.) Proceedings, 14th IMACS World Congress on Comput. and Appl. Math., Georgia, vol. 3, pp. 1267–1270 (1994)Google Scholar
  13. 13.
    Imoni, S.O., Otunta, F.O., Ramamohan, T.R.: Embedded Implicit Runge-Kutta Nystrom Method for Solving Second-Order Differential Equations. Int. J. Comput. Math. 83, 777–784 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Li, S.F., Gan, S.: A class of Parallel Multistep Runge-Kutta Predictor-Corrector Algorithms. J. Numer. Methods Comput. Appl. 17, 1–11 (1995)MathSciNetGoogle Scholar
  15. 15.
    Olsson, H., Soderlind, G.: Stage Value Predictors and Efficient Newton Iterations in Implicit Runge-Kutta Methods. SIAM J. Sci. Comput. 20, 185–202 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ramos, H., Vigo-Aguiar, J.: A fourth-Order Runge-Kutta Method Based on BDF-Type Chebyshev Approximations. J. Comput. Appl. Math. 204, 124–136 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Serbin, M.: On Factoring A class of Complex Symmetric Matrices Without Pivoting. Math. Comput. 35, 1231–1234 (1980b)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Shampine, L.: Implementation of Implicit Formulas for the Solution of ODE’s. SIAM J. Sci. Stat. Comput. 1, 103–118 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Sharp, P., Fine, J., Burrage, K.: Two-Stage and Three Stage Diagonally Implicit Runge-Kutta Nystrom Methods of Order Three and Four. IMA J. Numer. Anal. 10, 489–504 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Voss, D., Muir, P.: Mono-Implicit Runge-Kutta Schemes for the Parallel Solutions of Initial Value ODE’s. J. Comput. Appl. Math. 102, 235–252 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Xiao, A.: Order Results for Algebraically Stable Mono-Implicit Runge-Kutta Methods. J. Comput. Appl. Math. 17, 639–644 (1999)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Basem S. Attili
    • 1
  1. 1.Mathematics DepartmentUniversity of SharjahSharjahUnited Arab Emirates

Personalised recommendations