Advertisement

Computing the Minkowski Value of the Exponential Function over a Complex Disk

  • Hyeong In Choi
  • Rida T. Farouki
  • Chang Yong Han
  • Hwan Pyo Moon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5081)

Abstract

Basic concepts, results, and applications of the Minkowski geometric algebra of complex sets are briefly reviewed, and preliminary ideas on its extension to evaluating transcendental functions of complex sets are discussed. Specifically, the Minkowski value of the exponential function over a disk in the complex plane is considered, as the limit of partial–sum sets defined by the monomial or Horner evaluation schemes.

Keywords

Circular Disk Real Interval Monte Carlo Experiment Canonical Position Complex Disk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1974)zbMATHGoogle Scholar
  2. 2.
    Cabot, A., Seeger, A.: Multivalued exponential analysis. Part I: Maclaurin exponentials. Set–Valued Analysis 14, 347–379 (2006)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Farouki, R.T., Chastang, J.–C.A.: Curves and surfaces in geometrical optics. In: Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods in Computer Aided Geometric Design II, pp. 239–260. Academic Press, London (1992)Google Scholar
  4. 4.
    Farouki, R.T., Chastang, J.–C.A.: Exact equations of “simple” wavefronts. Optik 91, 109–121 (1992)Google Scholar
  5. 5.
    Farouki, R.T., Gu, W., Moon, H.P.: Minkowski roots of complex sets. In: Geometric Modeling and Processing 2000, pp. 287–300. IEEE Computer Society Press, Los Alamitos (2000)CrossRefGoogle Scholar
  6. 6.
    Farouki, R.T., Han, C.Y.: Computation of Minkowski values of polynomials over complex sets. Numerical Algorithms 36, 13–29 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Farouki, R.T., Han, C.Y.: Solution of elementary equations in the Minkowski geometric algebra of complex sets. Advances in Computational Mathematics 22, 301–323 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Farouki, R.T., Han, C.Y.: Robust plotting of generalized lemniscates. Applied Numerical Mathematics 51, 257–272 (2005)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Farouki, R.T., Han, C.Y.: Root neighborhoods, generalized lemniscates, and robust stability of dynamic systems. Applicable Algebra in Engineering, Communication, and Computing 18, 169–189 (2007)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Farouki, R.T., Han, C.Y., Hass, J.: Boundary evaluation algorithms for Minkowski combinations of complex sets using topological analysis of implicit curves. Numerical Algorithms 40, 251–283 (2007)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Farouki, R.T., Hass, J.: Evaluating the boundary and covering degree of planar Minkowski sums and other geometrical convolutions. Journal of Computational and Applied Mathematics 209, 246–266 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Farouki, R.T., Moon, H.P.: Minkowski geometric algebra and the stability of characteristic polynomials. In: Hege, H.–C., Polthier, K. (eds.) Visualization in Mathematics 3, pp. 163–188. Springer, Heidelberg (2003)Google Scholar
  13. 13.
    Farouki, R.T., Moon, H.P., Ravani, B.: Algorithms for Minkowski products and implicitly–defined complex sets. Advances in Computational Mathematics 13, 199–229 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Farouki, R.T., Moon, H.P., Ravani, B.: Minkowski geometric algebra of complex sets. Geometriae Dedicata 85, 283–315 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Farouki, R.T., Pottmann, H.: Exact Minkowski products of N complex disks. Reliable Computing 8, 43–66 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Friedman, A.: Stochastic Differential Equations and Applications. Academic Press, New York (1975)zbMATHGoogle Scholar
  17. 17.
    Gihman, I.I., Skorohod, A.V.: Stochastic Differential Equations (translated by K. Wickwire). Springer, Berlin (1972)zbMATHGoogle Scholar
  18. 18.
    Ghosh, P.K.: A mathematical model for shape description using Minkowski operators. Computer Vision, Graphics, and Image Processing 44, 239–269 (1988)CrossRefGoogle Scholar
  19. 19.
    Ghosh, P.K.: A unified computational framework for Minkowski operations. Computers & Graphics 17, 357–378 (1993)CrossRefGoogle Scholar
  20. 20.
    Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche, und Isoperimetrie. Springer, Berlin (1957)zbMATHGoogle Scholar
  21. 21.
    Hausdorff, F.: Set Theory (translated by J. R. Aumann et al.), Chelsea, New York (1957)Google Scholar
  22. 22.
    Kaul, A.: Computing Minkowski sums, PhD Thesis, Columbia University (1993)Google Scholar
  23. 23.
    Kaul, A., Farouki, R.T.: Computing Minkowski sums of plane curves. International Journal of Computational Geometry and Applications 5, 413–432 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Kaul, A., Rossignac, J.R.: Solid interpolating deformations: Construction and animation of PIP. Computers and Graphics 16, 107–115 (1992)CrossRefGoogle Scholar
  25. 25.
    Lozano–Pérez, T., Wesley, M.A.: An algorithm for planning collision–free paths among polyhedral obstacles. Communications of the ACM 22, 560–570 (1979)CrossRefGoogle Scholar
  26. 26.
    Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)zbMATHGoogle Scholar
  27. 27.
    Middleditch, A.E.: Applications of a vector sum operator. Computer Aided Design 20, 183–188 (1988)zbMATHCrossRefGoogle Scholar
  28. 28.
    Minkowski, H.: Volumen und Oberfläche. Mathematische Annalen 57, 447–495 (1903)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Moore, R.E.: Interval Analysis. Prentice–Hall, Englewood Cliffs (1966)zbMATHGoogle Scholar
  30. 30.
    Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)zbMATHGoogle Scholar
  31. 31.
    Øksendal, B.K.: Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin (1998)Google Scholar
  32. 32.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)zbMATHGoogle Scholar
  33. 33.
    Serra, J.: Introduction to mathematical morphology. Computer Vision, Graphics, and Image Processing 35, 283–305 (1986)CrossRefGoogle Scholar
  34. 34.
    Tomiczková, S.: Minkowski Operations and Their Applications, PhD Thesis, Plzeň, Czech Republic (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hyeong In Choi
    • 1
  • Rida T. Farouki
    • 2
  • Chang Yong Han
    • 3
  • Hwan Pyo Moon
    • 1
  1. 1.Department of MathematicsSeoul National UniversitySeoulSouth Korea
  2. 2.Department of Mechanical and Aeronautical EngineeringUniversity of CaliforniaDavisUSA
  3. 3.School of Electronics and InformationKyung Hee UniversitySouth Korea

Personalised recommendations