Analysis of User Perceived QoS in Ubiquitous UMTS Environments Subject to Faults

  • Andrea Bondavalli
  • Paolo Lollini
  • Leonardo Montecchi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5287)


This paper provides a QoS analysis of a dynamic, ubiquitous UMTS network scenario in the automotive context identified in the ongoing EC HIDENETS project. The scenario comprises different types of mobile users, applications, traffic conditions, and outage events reducing the available network resources. Adopting a compositional modeling approach based on Stochastic Activity Networks formalism, we analyze the Quality of Service (QoS) both from the users’ perspective and from the mobile operator’s one. The classical QoS analysis is enhanced by taking into account the congestion both caused by the outage events and by the varying traffic conditions.


QoS analysis UMTS networks partial outages compositional modeling stochastic activity networks simulation 


  1. 1.
    European Project HIDENETS: contract n. 26979,
  2. 2.
    Laiho, J., Wacker, A., Novosad, T.: Radio Network Planning and Optimisation for UMTS, 2nd edn. Wiley, Chichester (2006)Google Scholar
  3. 3.
    Lollini, P., Bondavalli, A., Di Giandomenico, F.: QoS Analysis of a UMTS cell with different Service Classes. In: CSN-2005 The Fourth IASTED International Conference on Communication Systems and Networks, September 12-14 (2005)Google Scholar
  4. 4.
    Andersin, M., Rosberg, Z., Zander, J.: Soft and safe admission control in cellular networks. IEEE/ACM Transaction on Networking 5(2) (1997)Google Scholar
  5. 5.
    Nicol, D.M., Sanders, W.H., Trivedi, K.S.: Model-based evaluation: From dependability to security. IEEE Transactions on Dependable and Secure Computing 1(1), 48–65 (2004)CrossRefGoogle Scholar
  6. 6.
    Rojas, I.: Compositional construction of SWN models. The Computer Journal 38(7), 612–621 (1995)CrossRefGoogle Scholar
  7. 7.
    Bernardi, S., Donatelli, S.: Stochastic petri nets and inheritance for dependability modelling. In: Proceedings of the 10th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC 2004), March 2004, pp. 363–372 (2004)Google Scholar
  8. 8.
    Sanders, W.H., Meyer, J.F.: Stochastic activity networks: formal definitions and concepts, pp. 315–343 (2002)Google Scholar
  9. 9.
    Sanders, W.H., Meyer, J.F.: Reduced base model construction methods for stochastic activity networks. IEEE Journal on Selected Areas in Communications 9(1), 25–36 (1991)CrossRefGoogle Scholar
  10. 10.
    Lollini, P., Montecchi, L., Bondavalli, A.: On the evaluation of hidenets use-cases having phased behavior. Technical Report rcl071201, University of Florence, Dip. Sistemi Informatica, RCL group (December 2007),
  11. 11.
    Daly, D., Deavours, D.D., Doyle, J.M., Webster, P.G., Sanders, W.H.: Möbius: An extensible tool for performance and dependability modeling. In: Schaumnurg, I.L., Haverkort, B.R., Bohnenkamp, H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS, vol. 1786, pp. 332–336. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2008

Authors and Affiliations

  • Andrea Bondavalli
    • 1
  • Paolo Lollini
    • 1
  • Leonardo Montecchi
    • 1
  1. 1.Dipartimento di Sistemi e InformaticaUniversità degli Studi di FirenzeFirenzeItaly

Personalised recommendations