Skip to main content

Particle Swarms for Competency-Based Curriculum Sequencing

  • Conference paper
  • 1841 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 5288)

Abstract

In e-learning initiatives content creators are usually required to arrange a set of learning resources in order to present them in a comprehensive way to the learner. Course materials are usually divided into reusable chunks called Learning Objects (LOs) and the ordered set of LOs is called sequence, so the process is called LO sequencing. In this paper an intelligent agent that performs the LO sequencing process is presented. Metadata and competencies are used to define relations between LOs so that the sequencing problem can be characterized as a Constraint Satisfaction Problem (CSP) and artificial intelligent techniques can be used to solve it. A Particle Swarm Optimization (PSO) agent is proposed, built, tuned and tested. Results show that the agent succeeds in solving the problem and that it handles reasonably combinatorial explosion inherent to this kind of problems.

Keywords

  • e-Learning
  • Learning Object Sequencing
  • Swarm Intelligence
  • Particle Swarm Optimization (PSO)

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-87781-3_27
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-87781-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brusilovsky, P.: Adaptive and Intelligent Technologies for Web-based Education. Künstliche Intelligenz, Special Issue on Intelligent Systems and Teleteaching 4, 19–25 (1999)

    Google Scholar 

  2. Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Modeling and User-Adapted Interaction 6, 87–129 (1996)

    CrossRef  Google Scholar 

  3. De Bra, P., Houben, G.-J., Wu, H.: AHAM: a Dexter-based reference model for adaptive hypermedia. In: Proceedings of the tenth ACM Conference on Hypertext and hypermedia. ACM Press, Darmstadt (1999)

    Google Scholar 

  4. Karampiperis, P.: Automatic Learning Object Selection and Sequencing in Web-Based Intelligent Learning Systems. In: Zongmin, M. (ed.) Web-Based Intelligent E-Learning Systems: Technologies and Applications. Idea Group, London (2006)

    Google Scholar 

  5. De Bra, P., Aerts, A., Berden, B., de Lange, B., Rousseau, B., Santic, T., Smits, D., Stash, N.: AHA! The adaptive hypermedia architecture. In: Proceedings of the fourteenth ACM conference on Hypertext and hypermedia. ACM Press, Nottingham (2003)

    Google Scholar 

  6. Wiley, D.A.: Connecting learning objects to instructional design theory: A definition, a metaphor, and a taxonomy. In: Wiley, D.A. (ed.) The Instructional Use of Learning Objects (2000)

    Google Scholar 

  7. ADL: Shareable Content Object Reference Model (SCORM). The SCORM 2004 Overview. Advanced Distributed Learning (ADL) Initiative (2004)

    Google Scholar 

  8. Wilkinson, J.: A matter of life or death: re-engineering competency-based education through the use of a multimedia CD-ROM. In: Proceedings of IEEE International Conference on Advanced Learning Technologies, 2001, pp. 205–208 (2001)

    Google Scholar 

  9. IMS: Reusable Definition of Competency or Educational Objective - Information Model. IMS Global Learning Consortium (2002)

    Google Scholar 

  10. IEEE: Learning Technology Standards Committee (LTSC). Draft Standard for LearningTechnology - Data Model for Reusable Competency Definitions. IEEE (2007)

    Google Scholar 

  11. HR-XML: Competencies (Measurable Characteristics) Recommendation. HR-XML Consortium (2006)

    Google Scholar 

  12. CEN/ISSS: European Model for Learner Competencies. Comité Européen de Normalisation / Information Society Standardization System (CEN/ISSS) (2006)

    Google Scholar 

  13. IEEE: Learning Technology Standards Committee (LTSC). Learning Object Metadata (LOM). 1484.12.1. IEEE (2002)

    Google Scholar 

  14. IEEE: Learning Technology Standards Committee (LTSC). Standard for Learning Technology—Extensible Markup Language (XML) Schema Definition Language Binding for Learning Object Metadata. 1484.12.3. IEEE (2005)

    Google Scholar 

  15. IMS: Reusable Definition of Competency or Educational Objective - Best Practice and Implementation Guide. IMS Global Learning Consortium (2002)

    Google Scholar 

  16. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London (1993)

    Google Scholar 

  17. Hinchey, M.G., Sterritt, R., Rouff, C.: Swarms and Swarm Intelligence. Computer 40, 111–113 (2007)

    CrossRef  Google Scholar 

  18. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS 1995, Nagoya, Japan, pp. 39–43 (1995)

    Google Scholar 

  19. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Perth, WA, Australia, vol. 1944, pp. 1942–1948 (1995)

    Google Scholar 

  20. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108 (1997)

    Google Scholar 

  21. Xiaohui, H., Eberhart, R.C., Yuhui, S.: Swarm intelligence for permutation optimization: a case study of n-queens problem. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium, pp. 243–246. IEEE Press, Indianapolis (2003)

    CrossRef  Google Scholar 

  22. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe better. IEEE Transactions on Evolutionary Computation 8, 204–210 (2004)

    CrossRef  Google Scholar 

  23. Robinson, J., Rahmat-Samii, Y.: Particle swarm optimization in electromagnetics. IEEE Transactions on Antennas and Propagation 52, 397–407 (2004)

    CrossRef  MathSciNet  Google Scholar 

  24. Barchino, R., Gutiérrez, J.M., Otón, S.: An Example of Learning Management System. In: Isaías, P., Baptista, M., Palma, A. (eds.) IADIS Virtual Multi Conference on Computer Science and Information Systems (MCCSIS 2005), vol. 1, pp. 140–141. IADIS Press, Virtual (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de-Marcos, L., Martínez, JJ., Gutiérrez, JA. (2008). Particle Swarms for Competency-Based Curriculum Sequencing. In: Lytras, M.D., Carroll, J.M., Damiani, E., Tennyson, R.D. (eds) Emerging Technologies and Information Systems for the Knowledge Society. WSKS 2008. Lecture Notes in Computer Science(), vol 5288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87781-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87781-3_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87780-6

  • Online ISBN: 978-3-540-87781-3

  • eBook Packages: Computer ScienceComputer Science (R0)