Optimizing Threshold Protocols in Adversarial Structures

  • Maurice Herlihy
  • Flavio P. Junqueira
  • Keith Marzullo
  • Lucia Draque Penso
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5218)


Many replication protocols are using a threshold model in which failures are independent and identically distributed (IID). In this model, one assumes that no more than t out of n components can fail. In many real systems, however, failures are not IID, and a straightforward application of threshold protocols yields suboptimal results.

Here, we examine the problem of optimally transforming threshold protocols into survivor-set protocols tolerating dependent failures. In particular, we are interested in threshold protocols where the number of components n and the number of failures t are related by n > k ·t, where k is a positive integer constant k. We develop an optimal transformation that translates any such threshold protocol to a survivor-set dependent failure model, and hence, to adversarial structures. Our transformation does not require authentication, self-verification or encryption. We characterize equivalence classes of adversarial structures, regarding solvability, using certain hierarchical properties based on set intersection.


Threshold Model Valid Solution Impossibility Result Adversary Structure Quorum System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and Advanced Topics. McGraw-Hill, New York (1998)Google Scholar
  2. 2.
    Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asynchronous computations. In: Proceedings of the Twenty-Fifth ACM Symposium on Theory of Computing (STOC 1993), pp. 91–100. ACM Press, New York (1993)CrossRefGoogle Scholar
  3. 3.
    Budhiraja, N., Marzullo, K., Schneider, F., Toueg, S.: Optimal primary-backup protocols. In: Proceedings of the Sixth International Workshop on Distributed Algorithms (WDAG 1997), pp. 362–378 (November 1992)Google Scholar
  4. 4.
    Castro, M., Liskov, B.: Practical byzantine fault-tolerance and proactive recovery. ACM Transactions on Computer Systems 20, 398–461 (2002)CrossRefGoogle Scholar
  5. 5.
    Castro, M., Rodrigues, R., Liskov, B.: BASE: Using abstraction to improve fault tolerance. ACM Transactions on Computer Systems 21, 236–269 (2003)CrossRefGoogle Scholar
  6. 6.
    Ekwall, R., Urban, P., Schiper, A.: Robust TCP connections for fault tolerant computing. In: Proceedings of the Ninth IEEE International Conference on Parallel and Distributed Systems, pp. 501–508. ACM Press, New York (2002)CrossRefGoogle Scholar
  7. 7.
    Garcia-Molina, H., Barbara, D.: How to assign votes in a distributed system. Journal of the ACM 32(4), 841–860 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Guerraoui, R., Rodrigues, L.: Introduction to Reliable Distributed Programming. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  9. 9.
    Guerraoui, R., Vukolic, M.: Refined quorum systems. In: Proceedings of the Twenty-Sixth ACM Symposium on Principles of Distributed Computing (PODC 2007), pp. 119–128. Springer, Heidelberg (2007)Google Scholar
  10. 10.
    Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Languages and Systems 13(1), 124–149 (1991)CrossRefGoogle Scholar
  11. 11.
    Herlihy, M., Shavit, N.: The topological structure of asynchronous computability. Journal of the ACM 46(6), 858–923 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hirt, M., Maurer, U.: Complete characterization of adversaries tolerable in secure multi-party computation. In: Proceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed Computing (PODC 1997), pp. 25–34 (August 1997)Google Scholar
  13. 13.
    Junqueira, F.: Coping with Dependent Failures in Distributed Systems. Number 0737 in CS2003. Ph.D. Thesis, UC San Diego (September 2002)Google Scholar
  14. 14.
    Junqueira, F., Marzullo, K.: Designing algorithms for dependent process failures. Future Directions in Distributed Computing 2584, 24–28 (2003)CrossRefGoogle Scholar
  15. 15.
    Junqueira, F., Marzullo, K.: Synchronous consensus for dependent process failures. In: Proceedings of the Conference on Distributed Computing Systems (ICDCS 2003), pp. 274–283. Springer, Heidelberg (2003)Google Scholar
  16. 16.
    Junqueira, F., Marzullo, K.: Replication predicates for dependent-failures algorithms. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 617–632. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Junqueira, F., Marzullo, K.: A framework for the design of dependent-failure algorithms. Concurrency and Computation: Practice and Experience 19(17), 2255–2269 (2007)CrossRefGoogle Scholar
  18. 18.
    Lamport, L.: Fast Paxos. Distributed Computing 19, 79–103 (2006)CrossRefGoogle Scholar
  19. 19.
    Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Transactions on Programming Languages and Systems 4(3), 382–401 (1982)zbMATHCrossRefGoogle Scholar
  20. 20.
    Malkhi, D., Reiter, M.: Byzantine quorum systems. Distributed Computing 11(4) (October/June 1998)Google Scholar
  21. 21.
    Neumann, P.G.: Computer Related Risks. ACM Press, New York (1995)Google Scholar
  22. 22.
    Schneider, F.: Implementing fault-tolerant services using the state-machine approach: a tutorial. ACM Computing Surveys 22(4), 299–319 (1990)CrossRefGoogle Scholar
  23. 23.
    Warns, T., Freiling, F.C., Hasselbring, W.: Consensus using structural failure models. In: Proceedings of the 25th IEEE Symposium on Reliable Distributed Systems (SRDS 2006), pp. 212–224. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Zieliński, P.: Automatic verification and discovery of Byzantine consensus protocols. In: The 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2007), pp. 25–28. IEEE Computer Society, Los Alamitos (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Maurice Herlihy
    • 1
  • Flavio P. Junqueira
    • 2
  • Keith Marzullo
    • 3
  • Lucia Draque Penso
    • 1
  1. 1.Brown University 
  2. 2.Yahoo! Research Barcelona 
  3. 3.UC San Diego 

Personalised recommendations