Matrix Signatures: From MACs to Digital Signatures in Distributed Systems

  • Amitanand S. Aiyer
  • Lorenzo Alvisi
  • Rida A. Bazzi
  • Allen Clement
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5218)


We present a general implementation for providing the properties of digital signatures using MACs in a system consisting of any number of untrusted clients and n servers, up to f of which are Byzantine. At the heart of the implementation is a novel matrix signature that captures the collective knowledge of the servers about the authenticity of a message. Matrix signatures can be generated or verified by the servers in response to client requests and they can be transmitted and exchanged between clients independently of the servers. The implementation requires that no more than one third of the servers be faulty, which we show to be optimal. The implementation places no synchrony requirements on the communication and only require fair channels between clients and servers.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: STOC 1990: Proceedings of the twenty-second annual ACM symposium on Theory of computing, pp. 387–394. ACM, New York (1990)CrossRefGoogle Scholar
  2. 2.
    Castro, M.: Practical Byzantine Fault Tolerance. PhD thesis, MIT (January 2001)Google Scholar
  3. 3.
    Schneier, B.: Applied cryptography: protocols, algorithms, and source code in C, 2nd edn. John Wiley & Sons, Inc., New York (1995)Google Scholar
  4. 4.
    Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery. ACM Trans. Comput. Syst. 20(4), 398–461 (2002)CrossRefGoogle Scholar
  5. 5.
    Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L.: HQ replication: A hybrid quorum protocol for Byzantine fault tolerance. In: Proc. 7th OSDI (November 2006)Google Scholar
  6. 6.
    Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative byzantine fault tolerance. In: Proc. 21st SOSP (2007)Google Scholar
  7. 7.
    Srikanth, T.K., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-tolerant algorithms. Distributed Computing 2(2), 80–94 (1987)CrossRefGoogle Scholar
  8. 8.
    Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative byzantine fault tolerance. Technical Report TR-07-40, University of Texas at Austin (2007)Google Scholar
  9. 9.
    Goldreich, O.: Foundations of Cryptography. Volume Basic Tools. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  10. 10.
    Aiyer, A., Alvisi, L., Bazzi, R.A.: Bounded wait-free implementation of optimally resilient byzantine storage without (unproven) cryptographic assumptions. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 443–458. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. on Info Theory 22(6), 644–654 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hanaoka, G., Shikata, J., Zheng, Y., Imai, H.: Unconditionally secure digital signature schemes admitting transferability. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 130–142. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Bishop, M.: Computer Security. Addison-Wesley, Reading (2002)Google Scholar
  15. 15.
    Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)zbMATHCrossRefGoogle Scholar
  16. 16.
    Aiyer, A.S., Lorenzo Alvisi, R.A.B., Clement, A.: Matrix signatures: From macs to digital signatures. Technical Report TR-08-09, University of Texas at Austin, Department of Computer Sciences (February 2008)Google Scholar
  17. 17.
    Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. J. ACM 27(2), 228–234 (1980)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Amitanand S. Aiyer
    • 1
  • Lorenzo Alvisi
    • 1
  • Rida A. Bazzi
    • 2
  • Allen Clement
    • 1
  1. 1.Department of Computer SciencesUniversity of Texas at Austin 
  2. 2.School of Computing and InformaticsArizona State University 

Personalised recommendations