Skip to main content

Constant-Space Localized Byzantine Consensus

  • Conference paper
Book cover Distributed Computing (DISC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5218))

Included in the following conference series:

Abstract

Adding Byzantin tolerance to large scale distributed systems is considered non-practical. The time, message and space requirements are very high. Recently, researches have investigated the broadcast problem in the presence of a f l -local Byzantin adversary. The local adversary cannot control more than f l neighbors of any given node. This paper proves sufficient conditions as to when the synchronous Byzantin consensus problem can be solved in the presence of a f l -local adversary.

Moreover, we show that for a family of graphs, the Byzantin consensus problem can be solved using a relatively small number of messages, and with time complexity proportional to the diameter of the network. Specifically, for a family of bounded-degree graphs with logarithmic diameter, O(logn) time and O(n logn) messages. Furthermore, our proposed solution requires constant memory space at each node.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afek, Y., Stupp, G.: Optimal time-space tradeoff for shared memory leader election. J. Algorithms 25(1), 95–117 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced Topics. John Wiley & Sons, Chichester (2004)

    Google Scholar 

  3. Beauquier, J., Gradinariu, M., Johnen, C.: Memory space requirements for self-stabilizing leader election protocols. In: PODC 1999: Proceedings of the eighteenth annual ACM symposium on Principles of distributed computing, pp. 199–207. ACM, New York (1999)

    Chapter  Google Scholar 

  4. Beauquier, J., Gradinariu, M., Johnen, C.: Randomized self-stabilizing and space optimal leader election under arbitrary scheduler on rings. Distributed Computing 20(1), 75–93 (2007)

    Article  Google Scholar 

  5. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery. ACM Trans. Comput. Syst. 20(4), 398–461 (2002)

    Article  Google Scholar 

  6. Dolev, D.: The byzantine generals strike again. Journal of Algorithms 3, 14–30 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dolev, D., Reischuk, R.: Bounds on information exchange for byzantine agreement. J. ACM 32(1), 191–204 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  9. Dolev, S., Gouda, M.G., Schneider, M.: Memory requirements for silent stabilization. In: PODC 1996: Proceedings of the fifteenth annual ACM symposium on Principles of distributed computing, pp. 27–34. ACM, New York (1996)

    Chapter  Google Scholar 

  10. Koo, C.-Y.: Broadcast in radio networks tolerating byzantine adversarial behavior. In: PODC 2004: Proceedings of the twenty-third annual ACM symposium on Principles of distributed computing, pp. 275–282. ACM, New York (2004)

    Chapter  Google Scholar 

  11. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Transactions on Programming Languages and Systems 4(3), 301–382 (1982)

    Article  Google Scholar 

  12. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)

    MATH  Google Scholar 

  13. Pelc, A., Peleg, D.: Broadcasting with locally bounded byzantine faults. Inf. Process. Lett. 93(3), 109–115 (2005)

    Article  MathSciNet  Google Scholar 

  14. Toueg, S., Perry, K.J., Srikanth, T.K.: Fast distributed agreement. SIAM Journal on Computing 16(3), 445–457 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Yamashita, M., Kameda, T.: Computing on anonymous networks. i. characterizing the solvable cases. Parallel and Distributed Systems, IEEE Transactions 7(1), 69–89 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gadi Taubenfeld

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dolev, D., Hoch, E.N. (2008). Constant-Space Localized Byzantine Consensus. In: Taubenfeld, G. (eds) Distributed Computing. DISC 2008. Lecture Notes in Computer Science, vol 5218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87779-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87779-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87778-3

  • Online ISBN: 978-3-540-87779-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics