Skip to main content

Natural occurring uranium nanoparticles and the implication in bioremediation of surface mine waters

  • Chapter
Uranium, Mining and Hydrogeology

Abstract

We investigated the fractionation of mobile uranium in surface water from an abandoned uranium-mining site in eastern Germany. The water samples were sequentially ultra-filtrated to fractionate uranium into different sizes and delineate the colloidal and nanoparticle from dissolve U phases. The results revealed that only 20% of total dissolved uranium filtrates were lower than five kDa (i.e. ca. 1-3 nm). Between 30-40% of the total mobile U were either associated with colloids or exist as nanoparticles. Among others, biotic activities contribute significantly to the formation of colloidal or nanoparticle U. Thus, we discuss the implication of natural occurring colloidal and nanoparticle U on bioremediation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Basnakova, G., Stephens, E.R., Thaller, M.C., Rossolini, G.M. and Macaskie, L.E., (1998) The use of Escherichia coli bearing a phoN gene for the removal of uranium and nickel from aqueous flows. Applied Microbiology & Biotechnology, 50(2), 266-272.

    Article  Google Scholar 

  • Behrends, T. and Van Cappellen, P., (2005) Competition between enzymatic and abiotic reduction of uranium(VI) under iron reducing conditions. Chemical Geology, 220(3-4), 315-327.

    Article  Google Scholar 

  • Dodge, C.J., Francis, A.J., Gillow, J.B., Halada, G.P., Eng, C. and Clayton, C.R., (2002) Association of Uranium with Iron Oxides Typically Formed on Corroding Steel Surfaces. Environ. Sci. Technol., 36(16), 3504-3511.

    Article  Google Scholar 

  • Eyrolle, F. and Charmasson, S., (2001) Distribution of organic carbon, selected stable elements and artificial radionuclides among dissolved, colloidal and particulate phases in the Rhône River (France): Preliminary results. Journal of Environmental Radioactivity, 55(2), 145-155.

    Article  Google Scholar 

  • Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Duff, M.C., Gorby, Y.A., Li, S.-m.W. and Krupka, K.M., (2000) Reduction of U(VI) in goethite ([alpha]-FeOOH) suspensions by a dissimilatory metal-reducing bacterium. Geochimica et Cosmochimica Acta, 64(18), 3085-3098.

    Article  Google Scholar 

  • Guo, L., Hunt, B.J. and Santschi, P.H., (2001) Ultrafiltration behavior of major ions (Na, Ca, Mg, F, Cl, and SO4) in natural waters. Water Research, 35(6), 1500-1508.

    Article  Google Scholar 

  • Guo, L., Warnken, K.W. and Santschi, P.H., (2007) Retention behavior of dissolved uranium during ultrafiltration: Implications for colloidal U in surface waters. Marine Chemistry, 107(2), 156-166.

    Article  Google Scholar 

  • Hofmann, T., Baumann, T., Bundschuh, T., Kammer, F., Leis, A., Schmitt, D., Schäfer, T., Thieme, J., Totsche, K.-U. and Zänker, H., (2003) Aquatische Kolloide I: Eine Übersichtsarbeit zur Definition, zu Systemen und zur Relevanz. Grundwasser, 8(4), 203-212.

    Article  Google Scholar 

  • Kelly, S.D., Newville, M.G., Cheng, L., Kemner, K.M., Sutton, S.R., Fenter, P., Sturchio, N.C. and Spotl, C., (2003) Uranyl incorporation in natural calcite. Environmental Science & Technology, 37(7), 1284-1287.

    Article  Google Scholar 

  • Kohler, M., Curtis, G.P., Kent, D.B. and Davis, J.A., (1996) Experimental invesitgation and modelling of uranium (VI) transport under variable chemical conditions. Water Resources Research, 32(12), 3539-3551.

    Article  Google Scholar 

  • Kottelat, R., Vignati, D.A.L., Chanudet, V. and Dominik, J., (2008) Comparison of Small- and Large-scale Ultrafiltration Systems for Organic Carbon and Metals in Freshwater at Low Concentration Factor. Water, Air, & Soil Pollution, 187(1), 343-351.

    Article  Google Scholar 

  • Kumar, D., Bera, S., Tripathi, A.K., Dey, Kumar, D., Bera, S., Tripathi, A.K., Dey, G.K. and Gupta, N.M., (2003) Uranium oxide nanoparticles dispersed inside the mesopores of MCM-48: synthesis and characterization. Microporous and Mesoporous Materials, 66(2-3), 157-167.

    Article  Google Scholar 

  • Lovley, D.R., Widman, P.K., Woodward, J.C. and Phillips, E.J.P., (1993) Reduction of Uranium by Cytochrome C3 ofDesulfovibrio vulgaris. Applied and Environmental Microbiology, 59(11), 3572-3576.

    Google Scholar 

  • Nowack, B. and Bucheli, T.D., (2007) Occurrence, behavior and effects of nanoparticles in the environment. Marine Chemistry, 107, 156-166.

    Article  Google Scholar 

  • Riotte, J., Chabaux, F., Benedetti, M., Dia, A., Gerard, M., Boulegue, J. and Etame, J., (2003) Uranium colloidal transport and origin of the 234U-238U fractionation in surface waters: new insights from Mount Cameroon. Chemical Geology, 202(3-4), 365-381.

    Article  Google Scholar 

  • Suzuki, Y., Kelly, S.D., Kemner, K.M. and Banfield, J.F., (2002) Radionuclide contamination: Nanometre-size products of uranium bioreduction. Nature, 419(6903), 134-134.

    Article  Google Scholar 

  • Suzuki, Y., Kelly, S.D., Kemner, K.M. and Banfield, J.F., (2005) Direct Microbial Reduction and Subsequent Preservation of Uranium in Natural Near-Surface Sediment. Applied and Environmental Microbiology, 71( 4), 1790-1797.

    Article  Google Scholar 

  • Wielinga, B., Bostick, B., Hansel, C.M., Rosenzweig, R.F. and Fendorf, S., (2000) Inhibition of bacterial promoted Uranium reduction: Ferric (Hydr)oxide as competitive electron accepter. Environ. Sci. Technol., 34, 2190-2195.

    Article  Google Scholar 

  • Yoshioka, T., Mostofa, K., Konohira, E., Tanoue, E., Hayakawa, K., Takahashi, M., Ueda, S., Katsuyama, M., Khodzher, T., Bashenkhaeva, N., Korovyakova, I., Sorokovikova, L. and Gorbunova, L., (2007) Distribution and characteristics of molecular size fractions of freshwater-dissolved organic matter in watershed environments: its implication to degradation. Limnology, 8(1), 29-44.

    Article  Google Scholar 

  • Zänker, H., Ulrich, K.-U., Opel, K. and Brendler, V., (2007) The role of colloids in uranium transport: a comparison of nuclear waste repositories and abandoned uranium mines. In: Cidu, R. and Frau, F. (Editors), IMWA Symposium 2007: Water in Mining Environments, Cagliari, Italy.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mkandawire, M., Dudel, E.G. (2008). Natural occurring uranium nanoparticles and the implication in bioremediation of surface mine waters. In: Merkel, B.J., Hasche-Berger, A. (eds) Uranium, Mining and Hydrogeology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87746-2_60

Download citation

Publish with us

Policies and ethics