MENN Method Applications for Stock Market Forecasting

  • Guangfeng Jia
  • Yuehui Chen
  • Peng Wu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5263)


A new approach for forecasting stock index based on Multi Expression Neural Network (MENN) is proposed in this paper. The approach employs the multi expression programming (MEP) to evolve the architecture of the MENN and the particle swarm optimization (PSO) to optimize the parameters encoded in the MENN. This framework allows input variables selection, over-layer connections for the various nodes involved. The performance and effectiveness of the proposed method are evaluated using stock market forecasting problems and compared with the related methods.


Multi Expression Programming Artificial Neural Network Stock Market Forecasting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Robert, R., Jae, T., Lee, L.: Artificial Intelligence in Finance and Investing, ch. 10. IRWIN (1996)Google Scholar
  2. 2.
    Wu, Q., Chen, Y.H., Wu, P.: Higher Order Neural Networks for Stock Index Modeling. In: Zhang, M. (ed.) Artificial Higher Order Neural Networks for Economics and Business (in press, 2008)Google Scholar
  3. 3.
    White, H.: Economic Prediction Using Neural Networks. The Case of IBM Daily Stock Returns. In: Proc. of IEEE Int’l Conference on Neural Networks (1988)Google Scholar
  4. 4.
    Hecht-Nielsen, R.: Kolmogorov’s mapping neural network existence theorem. In: Proc. 1st IEEE Int’l Joint Conf. Neural Network (1987)Google Scholar
  5. 5.
    Adil, B., Lale, O.: MEPAR-miner: Multi-expression programming for classification rule mining. European Journal of Operational Research 183, 767–784 (2007)zbMATHCrossRefGoogle Scholar
  6. 6.
    Oltean, M., Dumitrescu, D.: Multi Expression Programming. Technical Report, UBB-01-2002, Babes-Bolyai University, Cluj-Napoca, Romania (2002),
  7. 7.
    Crina, G., Ajith, A., Sang, Y.H.: MEPIDS: Multi-Expression Programming for Intrusion Detection System. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 163–172. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Oltean, M., Grosan, C.: Evolving Digital Circuits Using Multi Expression Programming. In: Zebulum, R., et al. (eds.) NASA/DoD Conference on Evolvable Hardware, June 24-26, pp. 87–90. IEEE Press, NJ (2004)CrossRefGoogle Scholar
  9. 9.
    Kennedy, J.: Particle swarm optimization. In: Proc IEEE Int. Conf. on Neural Networks. IV, pp. 1942–1948 (1995)Google Scholar
  10. 10.
    Yoshida, H., Kawata, K., Fukuyama, Y., Takayama, S., Nakanishi, Y.: A Particle Swarm Optimization for Reactive Power and Voltage Control Considering Voltage Security Assessment. IEEE Trans. Power Syst. 15, 1232–1239 (2000)CrossRefGoogle Scholar
  11. 11.
    Zhang, X.Q., Chen, Y.H., Yang, J.Y.: Stock Index Forecasting Using PSO Based Selective Neural Network Ensemble. In: International Conference on Artificial Intelligence (ICAI 2007), vol. 1, pp. 260–264 (2007)Google Scholar
  12. 12.
    Hassan, M.R.U., Nath, B., Kirley, M.: A Fusion Model of HMM, ANN and GA for Stock Market Forecasting. Expert Systems with Applications 33, 171–180 (2007)CrossRefGoogle Scholar
  13. 13.
    National Stock Exchange of India Limited,
  14. 14.
    Wu, Q., Chen, Y.H., Liu, Z.: Ensemble Model of Intelligent Paradigms for Stock Market Forecasting. In: First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008), pp. 205–208 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Guangfeng Jia
    • 1
  • Yuehui Chen
    • 1
  • Peng Wu
    • 1
  1. 1.School of Information Science and EngineeringUniversity of JinanJinanChina

Personalised recommendations