Spider Diagrams of Order and a Hierarchy of Star-Free Regular Languages

  • Aidan Delaney
  • John Taylor
  • Simon Thompson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5223)

Abstract

The spider diagram logic forms a fragment of the constraint diagram logic and was designed to be primarily used as a diagrammatic software specification tool. Our interest is in using the logical basis of spider diagrams and the existing known equivalences between certain logics, formal language theory classes and some automata to inform the development of diagrammatic logics. Such developments could have many advantages, one of which would be aiding software engineers who are familiar with formal languages and automata to more intuitively understand diagrammatic logics. In this paper we consider relationships between spider diagrams of order (an extension of spider diagrams) and the star-free subset of regular languages. We extend the concept of the language of a spider diagram to encompass languages over arbitrary alphabets. Furthermore, the product of spider diagrams is introduced. This operator is the diagrammatic analogue of language concatenation. We establish that star-free languages are definable by spider diagrams of order equipped with the product operator and, based on this relationship, spider diagrams of order are as expressive as first order monadic logic of order.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barwise, J., Etchemendy, J.: Hyperproof. CSLI Press (1994)Google Scholar
  2. 2.
    Büchi, J.: Weak second order arithmetic and finite automata. Z. Math. Logik und Grundl. Math. 6, 66–92 (1960)MATHCrossRefGoogle Scholar
  3. 3.
    Chomsky, N.: Three models for the description of language. IRE Transactions on Information Theory, 113–124 (1956)Google Scholar
  4. 4.
    Delaney, A., Stapleton, G.: On the descriptional complexity of a diagrammatic notation. In: Visual Languages and Computing (September 2007)Google Scholar
  5. 5.
    Delaney, A., Stapleton, G.: Spider diagrams of order. In: International Workshop on Visual Languages and Logic (September 2007)Google Scholar
  6. 6.
    Ebbinghaus, H.-D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg (1991)Google Scholar
  7. 7.
    Euler, L.: Lettres a une princesse dallemagne sur divers sujets de physique et de philosophie. Letters 2, 102–108 (1775); Berne, Socit TypographiqueGoogle Scholar
  8. 8.
    Gil, J., Howse, J., Kent, S.: Formalising spider diagrams. In: Proceedings of IEEE Symposium on Visual Languages, Tokyo, September 1999, pp. 130–137. IEEE Computer Society Press, Los Alamitos (1999)CrossRefGoogle Scholar
  9. 9.
    Hammer, E.: Logic and Visual Information. CSLI Publications (1995)Google Scholar
  10. 10.
    Héam, P.-C.: On shuffle ideals. Theoretical Informatics and Applications 36, 359–384 (2002)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley Publishing, Reading (1979)MATHGoogle Scholar
  12. 12.
    Howse, J., Stapleton, G., Taylor, J.: Spider diagrams. LMS Journal of Computation and Mathematics 8, 145–194 (2005)MATHMathSciNetGoogle Scholar
  13. 13.
    Kent, S.: Constraint diagrams: Visualizing invariants in object oriented modelling. In: Proceedings of OOPSLA 1997, October 1997, pp. 327–341. ACM Press, New York (1997)CrossRefGoogle Scholar
  14. 14.
    Pin, J.-E.: Syntactic semigroups, pp. 679–746. Springer-Verlag, New York (1997)Google Scholar
  15. 15.
    Pin, J.-E., Straubing, H., Thérien, D.: Some results on the generalized star-height problem. Information and Computation 101, 219–250 (1992)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Shin, S.-J.: The Logical Status of Diagrams. Cambridge University Press, Cambridge (1994)MATHGoogle Scholar
  17. 17.
    Stapleton, G., Thompson, S., Howse, J., Taylor, J.: The expressiveness of spider diagrams. Journal of Logic and Computation 14(6), 857–880 (2004)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Stern, J.: Characterizations of some classes of regular events. Theoretical Computer Science 35, 17–42 (1985)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Thomas, W.: Classifying regular events in symbolic logic. Journal of Computer and System Sciences 25, 360–376 (1982)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Venn, J.: On the diagrammatic and mechanical representation of propositions and reasonings. Phil. Mag. (1880)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Aidan Delaney
    • 1
  • John Taylor
    • 1
  • Simon Thompson
    • 2
  1. 1.Visual Modelling GroupUniversity of Brighton 
  2. 2.Computing LaboratoryUniversity of Kent 

Personalised recommendations