A Proposal to Hybridize Multi-Objective Evolutionary Algorithms with Non-gradient Mathematical Programming Techniques

  • Saúl Zapotecas Martínez
  • Carlos A. Coello Coello
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5199)


The hybridization of multi-objective evolutionary algorithms (MOEAs) with mathematical programming techniques has gained increasing popularity in the specialized literature in the last few years. However, such hybrids normally rely on the use of gradients and, therefore, normally consume a high number of extra objective function evaluations in order to estimate the gradient information required. The use of direct (nonlinear) optimization techniques has been, however, less common in the specialized literature, although several hybrids of this sort have been proposed for single-objective evolutionary algorithms. This paper proposes a hybridization between a well-known MOEA (the NSGA-II) and two direct search methods (Nelder and Mead’s method and the golden section algorithm). The aim of the proposed approach is to combine the global search mechanisms of the evolutionary algorithm with the local search mechanisms provided by the aforementioned mathematical programming techniques, such that a more efficient (i.e., with a lower number of objective function evaluations) approach can be produced.


Pareto Front Multiobjective Optimization Golden Section Nondominated Solution Multiobjective Evolutionary Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007)zbMATHGoogle Scholar
  2. 2.
    Shukla, P.K.: On Gradient Based Local Search Methods in Unconstrained Evolutionary Multi-objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 96–110. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Mack, Y., Goel, T., Shyy, W., Haftka, R.: Surrogate Model-Based Optimization Framework: A Case Study in Aerospace Design. In: Yang, S., Ong, Y.S., Jin, Y. (eds.) Evolutionary Computation in Dynamic and Uncertain Environments, pp. 323–342. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  5. 5.
    Spendley, W., Hext, G.R., Himsworth, F.R.: Sequential Application of Simplex Designs in Optimization and Evolutionary Operation. Technometrics 4(4), 441–461 (1962)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. The Computer Journal 7, 308–313 (1965)CrossRefzbMATHGoogle Scholar
  7. 7.
    Ravindran, A., Ragsdell, K., Reklaitis, G.: Engineering Optimization. John Wiley & Sons, Inc., Hoboken (2006)CrossRefGoogle Scholar
  8. 8.
    Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik 2, 84–90 (1960)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    van der Corput, J.G.: Verteilungsfunktionen. Akademie van Wetenschappen 38, 813–821 (1935)Google Scholar
  10. 10.
    Hammersley, J.M.: Monte-Carlo methods for solving multivariable problems. Annals of the New York Academy of Science 86, 844–874 (1960)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    McKinnon, K.I.M.: Convergence of the Nelder–Mead Simplex Method to a Nonstationary Point. SIAM Journal on Optimization 9(1), 148–158 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Trabia, M.B., Lu, X.B.: A Fuzzy Adaptive Simplex Search Optimization Algorithm. Journal of Mechanical Design 123, 216–225 (2001)CrossRefGoogle Scholar
  13. 13.
    Rahman, M.K.: An intelligent moving object optimization algorithm for design problems with mixed variables, mixed constraints and multiple objectives. Structural and Multidisciplinary Optimization 32(1), 40–58 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Luersen, M.A., Le Riche, R.: Globalized Nelder-Mead method for engineering optimization. Computers & Structures 82, 2251–2260 (2004)CrossRefGoogle Scholar
  15. 15.
    Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM Journal of Optimization 9, 112–147 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)CrossRefGoogle Scholar
  17. 17.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multiobjective Optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 105–145. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Veldhuizen, D.A.V.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. PhD thesis, Department of Electrical and Computer Engineering. Graduate School of Engineering. Air Force Institute of Technology, Wright-Patterson AFB, Ohio (1999)Google Scholar
  19. 19.
    Schott, J.R.: Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. Master’s thesis, Department of Aeronautics and Astronautics. Massachusetts Institute of Technology, Cambridge, Massachusetts (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Saúl Zapotecas Martínez
    • 1
  • Carlos A. Coello Coello
    • 1
  1. 1.CINVESTAV-IPN (Evolutionary Computation Group), Departamento de ComputaciónMéxico D.F.México

Personalised recommendations