Approximating Minimum Multicuts by Evolutionary Multi-objective Algorithms

  • Frank Neumann
  • Joachim Reichel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5199)

Abstract

It has been shown that simple evolutionary algorithms are able to solve the minimum cut problem in expected polynomial time when using a multi-objective model of the problem. In this paper, we generalize these ideas to the NP-hard minimum multicut problem. Given a set of k terminal pairs, we prove that evolutionary algorithms in combination with a multi-objective model of the problem are able to obtain a k-approximation for this problem in expected polynomial time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R.K., Magnati, T.L., Orlin, J.B.: Network flows: theory, algorithms, and applications. Prentice-Hall, Englewood Cliffs (1993)MATHGoogle Scholar
  2. 2.
    Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. Journal of the ACM 45(3), 501–555 (1998)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bentz, C., Costa, M.-C., Létocard, L., Roupin, F.: Erratum to M.-C. Costa, L. Létocard and F. Roupin: Minimal multicut and maximal integer maxiflow: A survey. European Journal of Operational Research 162(1), 55–69 (2005); European Journal of Operational Research 177(2), 1312 (2007)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler, E.: Do additional objectives make a problem harder? In: Proc. of the 9th Genetic and Evolutionary Comp. Conference (GECCO 2007), pp. 765–772. ACM Press, New York (2007)Google Scholar
  5. 5.
    Cheriyan, J., Karloff, H., Rabani, Y.: Approximating directed multicuts. In: Proc. of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS 2001), pp. 320–328 (2001)Google Scholar
  6. 6.
    Chuzhoy, J., Khanna, S.: Polynomial flow-cut gaps and hardness of directed cut problems. In: Proc. of the 39th Annual ACM Symposium on Theory of Computing (STOC 2007), pp. 179–188 (2007)Google Scholar
  7. 7.
    Costa, M.-C., Létocard, L., Roupin, F.: Minimal multicut and maximal integer maxiflow: A survey. European Journal of Operational Research 162(1), 55–69 (2005)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM Journal of Computing 23, 864–894 (1994)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Doerr, B., Happ, E., Klein, C.: Crossover is provably useful in evolutionary computation. In: Proc. of the 10th Genetic and Evolutionary Computation Conference (GECCO 2008). ACM Press, New York (to appear, 2008)Google Scholar
  10. 10.
    Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating covering problems by randomized search heuristics using multi-objective models. In: Proc. of the 9th Genetic and Evolutionary Computation Conference (GECCO 2007), pp. 797–804 (2007)Google Scholar
  11. 11.
    Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut theorems and their applications. In: Proc. of the 25th Annual ACM Symposium on Theory of Computing (STOC 1993), pp. 698–707 (1993)Google Scholar
  12. 12.
    Giel, O.: Expected runtimes of a simple multi-objective evolutionary algorithm. In: Proc. of the IEEE Congress on Evolutionary Computation (CEC 2003), pp. 1918–1925 (2003)Google Scholar
  13. 13.
    Horoba, C., Neumann, F.: Benefits and drawbacks for the use of ε-dominance in evolutionary multi-objective optimization. In: Proc. of the 10th Genetic and Evolutionary Computation Conference (GECCO 2008). ACM Press, New York (to appear, 2008)Google Scholar
  14. 14.
    Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary Computation 10(3), 263–282 (2002)CrossRefGoogle Scholar
  15. 15.
    Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective evolutionary algorithms on pseudo-boolean functions. IEEE Transactions on Evolutionary Computation 8(2), 170–182 (2004)CrossRefGoogle Scholar
  16. 16.
    Neumann, F.: Expected runtimes of a simple evolutionary algorithm for the multi-objective minimum spanning tree problem. European Journal of Operational Research 181(3), 1620–1629 (2007)CrossRefMATHGoogle Scholar
  17. 17.
    Neumann, F., Reichel, J., Skutella, M.: Computing minimum cuts by randomized search heuristics. In: Proc. of the 10th Genetic and Evolutionary Computation Conference (GECCO 2008) (2008); (to appear, available as Technical Report CI-242/08, Collaborative Research Center 531, Technical University of Dortmund)Google Scholar
  18. 18.
    Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective optimization. Natural Computing 5(3), 305–319 (2006)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms and the minimum spanning tree problem. Theor. Comp. Sci. 378(1), 32–40 (2007)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary algorithms on sorting and shortest paths problems. Journal of Mathematical Modelling and Algorithms, 349–366 (2004)Google Scholar
  21. 21.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin (2003)Google Scholar
  22. 22.
    Witt, C.: Worst-case and average-case approximations by simple randomized search heuristics. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 44–56. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Frank Neumann
    • 1
  • Joachim Reichel
    • 2
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany
  2. 2.Institut für MathematikTU BerlinGermany

Personalised recommendations