Premature Convergence in Constrained Continuous Search Spaces

  • Oliver Kramer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5199)

Abstract

The optimum of numerical problems quite often lies on the constraint boundary or even in a vertex of the feasible search space. In such cases the evolutionary algorithm (EA) frequently suffers from premature convergence because of a low success probability near the constraint boundaries. We analyze premature fitness stagnation and the success rates experimentally for an EA using self-adaptive step size control. For a (1+1)-EA with a Rechenberg-like step control mechanism we prove premature step size reduction at the constraint boundary. The proof is based on a success rate analysis considering a simplified mutation distribution model. From the success rates and the possible state transitions, the expected step size change can be derived at each step. We validate the theoretical model with an experimental analysis.

Keywords

Premature Convergence Constrained Real-Parameter Optimization Evolution Strategies Self-Adaptation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beyer, H.-G., Schwefel, H.-P.: Evolution strategies - A Comprehensive Introduction. Natural Computing 1, 3–52 (2002)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Hansen, N.: An Analysis of Mutative Sigma Self-Adaptation on Linear Fitness Functions. Evolutionary Computation 14(3), 255–275 (2006)CrossRefGoogle Scholar
  3. 3.
    Joines, J., Houck, C.: On the Use of Non-Stationary Penalty Functions to Solve Nonlinear Constrained Optimization Problems with GAs. In: Fogel, D.B. (ed.) Proceedings of the Conference on Evolutionary Computation, pp. 579–584. IEEE Press, Orlando (1994)Google Scholar
  4. 4.
    Kramer, O., Schwefel, H.-P.: On Three New Approaches to Handle Constraints Within Evolution Strategies. Natural Computing 5(4), 363–385 (2006)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Kramer, O., Ting, C.-K., Büning, H.K.: A New Mutation Operator for Evolution Strategies for Constrained Problems. In: Proceedings of the Congress on Evolutionary Computation - CEC 2005, pp. 2600–2606 (2005)Google Scholar
  6. 6.
    Liang, K.-H., Yao, X., Liu, Y., Newton, C.S., Hoffman, D.: An Experimental Investigation of Self-Adaptation in Evolutionary Programming. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 291–300. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Meyer-Nieberg, S., Beyer, H.-G.: Self-Adaptation in Evolutionary Algorithms. In: Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms. Springer, Berlin (2007)Google Scholar
  8. 8.
    Rudolph, G.: Self-Adaptive Mutations Lead to Premature Convergence. IEEE Transactions on Evolutionary Computation 5(4), 410–414 (2001)CrossRefGoogle Scholar
  9. 9.
    Schwefel, H.-P.: Evolution and Optimum Seeking. In: Sixth-Generation Computer Technology. Wiley Interscience, New York (1995)Google Scholar
  10. 10.
    Stone, C., Smith, J.: Strategy Parameter Variety in Self-Adaptation of Mutation Rates. In: Proceedings of the Genetic and Evolutionary Computation Conference - GECCO 2002, pp. 586–593. Morgan Kaufmann Publishers, San Francisco (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Oliver Kramer
    • 1
  1. 1.Computational Intelligence GroupDortmund University of TechnologyDortmundGermany

Personalised recommendations