Abstract
We present Fitness Expectation Maximization (FEM), a novel method for performing ‘black box’ function optimization. FEM searches the fitness landscape of an objective function using an instantiation of the well-known Expectation Maximization algorithm, producing search points to match the sample distribution weighted according to higher expected fitness. FEM updates both candidate solution parameters and the search policy, which is represented as a multinormal distribution. Inheriting EM’s stability and strong guarantees, the method is both elegant and competitive with some of the best heuristic search methods in the field, and performs well on a number of unimodal and multimodal benchmark tasks. To illustrate the potential practical applications of the approach, we also show experiments on finding the parameters for a controller of the challenging non-Markovian double pole balancing task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Spall, J., Hill, S., Stark, D.: Theoretical framework for comparing several stochastic optimization approaches. Probabilistic and Randomized Methods for Design under Uncertainty, 99–117 (2006)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
Spall, J.C.: Stochastic optimization and the simultaneous perturbation method. In: WSC 1999: Proceedings of the 31st conference on Winter simulation, pp. 101–109. ACM, New York (1999)
Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method: A Unified Approach to Monte Carlo Simulation, Randomized Optimization and Machine Learning. Springer, Heidelberg (2004)
De Boer, P., Kroese, D., Mannor, S., Rubinstein, R.: A tutorial on the cross-entropy method. Annals of Operations Research 134, 19–67 (2004)
Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9(2), 159–195 (2001)
Larraanaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Norwell (2001)
Peters, J., Schaal, S.: Reinforcement learning by reward-weighted regression for operational space control. In: Proceedings of the International Conference on Machine Learning (ICML) (2007)
Dayan, P., Hinton, G.E.: Using expectation-maximization for reinforcement learning. Neural Computation 9(2), 271–278 (1997)
Wolpert, D.H., Rajnarayan, D.G.: Parametric Learning and Monte Carlo Optimization. ArXiv e-prints 704 (April 2007)
Gallagher, M., Frean, M., Downs, T.: Real-valued evolutionary optimization using a flexible probability density estimator. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, vol. 1, pp. 840–846. Morgan Kaufmann, San Francisco (1999)
Chernoff, H., Moses, L.E.: Elementary Decision Theory. Dover Publications (1987)
Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the cec 2005 special session on real-parameter optimization. Technical report, Nanyang Technological University, Singapore (2005)
Gonzalez, C., Lozano, J.A., Larraanaga, P.: Mathematical modelling of umdac algorithm with tournament selection. Behaviour on linear and quadratic functions. International Journal of Approximate Reasoning 31(3), 313–340 (2002)
Hansen, N.: An analysis of mutative σ-self-adaptation on linear fitness functions. Evolutionary Computation 14(3), 255–275 (2006)
Wieland, A.: Evolving neural network controllers for unstable systems. In: Proceedings of the International Joint Conference on Neural Networks, Seattle, WA, pp. 667–673. IEEE, Piscataway (1991)
Gomez, F.J., Miikkulainen, R.: Incremental evolution of complex general behavior. Adaptive Behavior 5, 317–342 (1997)
Moriarty, D.E., Miikkulainen, R.: Efficient reinforcement learning through symbiotic evolution. Machine Learning 22, 11–32 (1996)
Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evolutionary Computation 10, 99–127 (2002)
Igel, C.: Neuroevolution for reinforcement learning using evolution strategies. In: Congress on Evolutionary Computation (CEC 2003), vol. 4, pp. 2588–2595. IEEE Press, Los Alamitos (2003)
Faustino Gomez, J.S., Miikkulainen, R.: Efficient non-linear control through neuroevolution. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wierstra, D., Schaul, T., Peters, J., Schmidhuber, J. (2008). Fitness Expectation Maximization. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds) Parallel Problem Solving from Nature – PPSN X. PPSN 2008. Lecture Notes in Computer Science, vol 5199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87700-4_34
Download citation
DOI: https://doi.org/10.1007/978-3-540-87700-4_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87699-1
Online ISBN: 978-3-540-87700-4
eBook Packages: Computer ScienceComputer Science (R0)