Skip to main content

Fitness Expectation Maximization

  • Conference paper
Parallel Problem Solving from Nature – PPSN X (PPSN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5199))

Included in the following conference series:

Abstract

We present Fitness Expectation Maximization (FEM), a novel method for performing ‘black box’ function optimization. FEM searches the fitness landscape of an objective function using an instantiation of the well-known Expectation Maximization algorithm, producing search points to match the sample distribution weighted according to higher expected fitness. FEM updates both candidate solution parameters and the search policy, which is represented as a multinormal distribution. Inheriting EM’s stability and strong guarantees, the method is both elegant and competitive with some of the best heuristic search methods in the field, and performs well on a number of unimodal and multimodal benchmark tasks. To illustrate the potential practical applications of the approach, we also show experiments on finding the parameters for a controller of the challenging non-Markovian double pole balancing task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Spall, J., Hill, S., Stark, D.: Theoretical framework for comparing several stochastic optimization approaches. Probabilistic and Randomized Methods for Design under Uncertainty, 99–117 (2006)

    Google Scholar 

  2. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Spall, J.C.: Stochastic optimization and the simultaneous perturbation method. In: WSC 1999: Proceedings of the 31st conference on Winter simulation, pp. 101–109. ACM, New York (1999)

    Google Scholar 

  4. Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method: A Unified Approach to Monte Carlo Simulation, Randomized Optimization and Machine Learning. Springer, Heidelberg (2004)

    Book  Google Scholar 

  5. De Boer, P., Kroese, D., Mannor, S., Rubinstein, R.: A tutorial on the cross-entropy method. Annals of Operations Research 134, 19–67 (2004)

    Article  Google Scholar 

  6. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9(2), 159–195 (2001)

    Article  Google Scholar 

  7. Larraanaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Norwell (2001)

    Google Scholar 

  8. Peters, J., Schaal, S.: Reinforcement learning by reward-weighted regression for operational space control. In: Proceedings of the International Conference on Machine Learning (ICML) (2007)

    Google Scholar 

  9. Dayan, P., Hinton, G.E.: Using expectation-maximization for reinforcement learning. Neural Computation 9(2), 271–278 (1997)

    Article  MATH  Google Scholar 

  10. Wolpert, D.H., Rajnarayan, D.G.: Parametric Learning and Monte Carlo Optimization. ArXiv e-prints 704 (April 2007)

    Google Scholar 

  11. Gallagher, M., Frean, M., Downs, T.: Real-valued evolutionary optimization using a flexible probability density estimator. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, vol. 1, pp. 840–846. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  12. Chernoff, H., Moses, L.E.: Elementary Decision Theory. Dover Publications (1987)

    Google Scholar 

  13. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the cec 2005 special session on real-parameter optimization. Technical report, Nanyang Technological University, Singapore (2005)

    Google Scholar 

  14. Gonzalez, C., Lozano, J.A., Larraanaga, P.: Mathematical modelling of umdac algorithm with tournament selection. Behaviour on linear and quadratic functions. International Journal of Approximate Reasoning 31(3), 313–340 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hansen, N.: An analysis of mutative σ-self-adaptation on linear fitness functions. Evolutionary Computation 14(3), 255–275 (2006)

    Article  Google Scholar 

  16. Wieland, A.: Evolving neural network controllers for unstable systems. In: Proceedings of the International Joint Conference on Neural Networks, Seattle, WA, pp. 667–673. IEEE, Piscataway (1991)

    Google Scholar 

  17. Gomez, F.J., Miikkulainen, R.: Incremental evolution of complex general behavior. Adaptive Behavior 5, 317–342 (1997)

    Article  Google Scholar 

  18. Moriarty, D.E., Miikkulainen, R.: Efficient reinforcement learning through symbiotic evolution. Machine Learning 22, 11–32 (1996)

    Google Scholar 

  19. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evolutionary Computation 10, 99–127 (2002)

    Article  Google Scholar 

  20. Igel, C.: Neuroevolution for reinforcement learning using evolution strategies. In: Congress on Evolutionary Computation (CEC 2003), vol. 4, pp. 2588–2595. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  21. Faustino Gomez, J.S., Miikkulainen, R.: Efficient non-linear control through neuroevolution. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212. Springer, Heidelberg (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wierstra, D., Schaul, T., Peters, J., Schmidhuber, J. (2008). Fitness Expectation Maximization. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds) Parallel Problem Solving from Nature – PPSN X. PPSN 2008. Lecture Notes in Computer Science, vol 5199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87700-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87700-4_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87699-1

  • Online ISBN: 978-3-540-87700-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics