Uncertainty Handling in Model Selection for Support Vector Machines

  • Tobias Glasmachers
  • Christian Igel
Conference paper

DOI: 10.1007/978-3-540-87700-4_19

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5199)
Cite this paper as:
Glasmachers T., Igel C. (2008) Uncertainty Handling in Model Selection for Support Vector Machines. In: Rudolph G., Jansen T., Beume N., Lucas S., Poloni C. (eds) Parallel Problem Solving from Nature – PPSN X. PPSN 2008. Lecture Notes in Computer Science, vol 5199. Springer, Berlin, Heidelberg

Abstract

We consider evolutionary model selection for support vector machines. Hold-out set-based objective functions are natural model selection criteria, and we introduce a symmetrization of the standard cross-validation approach. We propose the covariance matrix adaptation evolution strategy (CMA-ES) with uncertainty handling for optimizing the new randomized objective function. Our results show that this search strategy avoids premature convergence and results in improved classification accuracy compared to strategies without uncertainty handling.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Tobias Glasmachers
    • 1
  • Christian Igel
    • 1
  1. 1.Institut für NeuroinformatikRuhr-Universität BochumGermany

Personalised recommendations