Enhancing the Efficiency of the ECGA

  • Thyago S. P. C. Duque
  • David E. Goldberg
  • Kumara Sastry
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5199)

Abstract

In this paper we show preliminary results of two efficiency enhancements proposed for Extended Compact Genetic Algorithm. First, a model building enhancement was used to reduce the complexity of the process from O(n3) to O(n2), speeding up the algorithm by 1000 times on a 4096 bits problem. Then, a local-search hybridization was used to reduce the population size by at least 32 times, reducing the memory and running time required by the algorithm. These results are the first steps toward a competent and efficient Genetic Algorithm.

Keywords

Estimation of Distribution Algorithms ECGA Model Building Efficiency Enhancement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)MATHGoogle Scholar
  2. 2.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1975)Google Scholar
  3. 3.
    Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Kluwer Academic Publishers, Dordrecht (2002)CrossRefGoogle Scholar
  4. 4.
    Sastry, K., Goldberg, D., Pelikan, M.: Efficiency enhancment of probabilistic model building genetic algorithm. Technical report, Illinois Genetic Algorithms Laboratory, Univeristy of Illinois at Urbana Champaign, Urbana, IL (2004)Google Scholar
  5. 5.
    Cantu-Paz, E.: Designing Efficient and Accurate Parallel Genetic Algorithms. PhD thesis, University of Illinois at Urbana-Champaign, Illigal Report No 99017 (1999)Google Scholar
  6. 6.
    Goldberg, D.E., Voessner, S.: Optimizing Global-Local Search Hybrids. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 1, pp. 220–228. Morgan Kaufmann, San Francisco (1999)Google Scholar
  7. 7.
    Sinha, A., Goldberg, D.: A survey of hybrid genetic and evolutionary algorithms. Technical report, University of Illinois at Urbana Chapaign, Urbana, IL (1999) IlliGal Report No. 2003004Google Scholar
  8. 8.
    Sinha, A.: Designing efficient genetic and evolutionary algorithm hybrids, Master Thesis, University of Illinois at Urbana Champaign (2003) (IlliGal Report No. 2003020)Google Scholar
  9. 9.
    Sastry, K., Goldberg, D.: Let’s Get Ready to Rumble: Crossover Versus Mutation Head to Head. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Sastry, K.: Evaluation-relaxation Schemes for Genetic and Evolutionary Algorithms. PhD thesis, University of Illinois at Urbana-Champaign (2001)Google Scholar
  11. 11.
    Harik, G., Lobo, F., Goldberg, D.: The compact genetic algorithm. In: Proceedings of IEEE Iternational Conference on Evolutionary Computation (1998), pp. 523–528 (1998)Google Scholar
  12. 12.
    Goldberg, D., Sastry, K., Llorà, X.: Toward routine billion-variable optimization using genetic algorithms: Short Communication. Complexity 12(3), 27–29 (2007)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Sastry, K., Goldberg, D., Llora, X.: Towards billion-bit optimization via a parallel estimation of distribution algorithm. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp. 577–584 (2007)Google Scholar
  14. 14.
    Harik, G.: Linkage Learning via probabilistic modeling in the ECGA. Technical report, University of Illinois at Urbana Chapaign, Urbana, IL (1999)Google Scholar
  15. 15.
    Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  16. 16.
    Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: The Bayesian optimization algorithm. In: Proceedings of the Genetic And Evolutionary Computation Conference, pp. 524–532 (1999)Google Scholar
  17. 17.
    de la Ossa, L., Sastry, K., Lobo, F.: χ–ary Extended Compact Genetic Algorithm in C++. Technical report, Illigal Report 2006013, Illinois Genetic Algorithms Lab, University of Illinois at Urbana-Champaign (2006)Google Scholar
  18. 18.
    Thierens, D., Goldberg, D.: Mixing in Genetic Algorithms. In: Proceedings of the 5th International Conference on Genetic Algorithms, pp. 38–47 (1993)Google Scholar
  19. 19.
    Pelikan, M., Sastry, K., Goldberg, D.: Sporadic model building for efficiency enhancement of hierarchical BOA. In: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp. 405–412. ACM Press, New York (2006)Google Scholar
  20. 20.
    Lima, C., Sastry, K., Goldberg, D., Lobo, F.: Combining competent crossover and mutation operators: a probabilistic model building approach. In: Proceedings of the 2005 conference on Genetic and evolutionary computation, pp. 735–742 (2005)Google Scholar
  21. 21.
    Yu, T., Goldberg, D.: Conquering hierarchical difficulty by explicit chunking: substructural chromosome compression. In: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp. 1385–1392 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Thyago S. P. C. Duque
    • 1
  • David E. Goldberg
    • 1
  • Kumara Sastry
    • 1
  1. 1.Illinois Genetic Algorithms LaboratoryUniversity of Illinois at Urbana ChampaignUrbanaUSA

Personalised recommendations