On the Influence of Description Logics Ontologies on Conceptual Similarity

  • Claudia d’Amato
  • Steffen Staab
  • Nicola Fanizzi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5268)


Similarity measures play a key role in the Semantic Web perspective. Indeed, most of the ontology related operations such as ontology learning, ontology alignment, ontology ranking and ontology population are grounded on the notion of similarity. In the last few years several similarity functions have been proposed for measuring both concept similarity and ontology similarity. However, they lack of a comprehensive formal characterization that is able to explain their behavior and value added, in particular when the ontologies are formulated in description logics languages like OWL-DL. Concept similarity functions need to be able to deal with the high expressive power of the ontology representation language, and to convey the underlying semantics of the ontology to which concepts refer. We propose a semantic similarity measure for complex Description Logics concept descriptions that elicits the underlying ontology semantics. Furthermore, we theorize a set of criteria that a measure has to satisfy in order to be compliant with a semantic expected behavior.


Description Logic Dissimilarity Measure Equivalence Soundness Concept Description Primitive Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in description logics with existential restrictions. In: Dean, T. (ed.) Proc. of IJCAI, pp. 96–101. Morgan Kaufmann, San Francisco (1999)Google Scholar
  2. 2.
    Baader, F., Sertkaya, R., Turhan, Y.: Computing least common subsumers w.r.t. a background terminology. In: Proc. of the Int. Workshop on DLs, (2004)Google Scholar
  3. 3.
    Bock, H.H., Diday, E.: Analysis of symbolic data: exploratory methods for extracting statistical information from complex data. Springer, Heidelberg (2000)Google Scholar
  4. 4.
    Borgida, A., Walsh, T.J., Hirsh, H.: Towards measuring similarity in description logics. In: Proc. of the Int. Description Logics WS. CEUR, vol. 147 (2005)Google Scholar
  5. 5.
    Brandt, S., Küsters, R., Turhan, A.-Y.: Approximation and difference in description logics. In: Fensel, D., Giunchiglia, F., McGuinness, D., Williams, M.-A. (eds.) Proc. of the Int. Conf. on Knowledge Representation, pp. 203–214. Morgan Kaufmann, San Francisco (2002)Google Scholar
  6. 6.
    Collins, A., Quillian, M.: Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Behavior 8, 240–247 (1969)CrossRefGoogle Scholar
  7. 7.
    d’Amato, C.: Similarity-based Learning Methods for the Semantic Web, PhD Thesis (2007)Google Scholar
  8. 8.
    d’Amato, C., Fanizzi, N., Esposito, F.: A dissimilarity measure for concept descriptions in expressive ontology languages. In: Alani, H., Brewster, C., Noy, N., Sleeman, D. (eds.) Proceedings of the KCAP 2005 Ontology Management Workshop, Banff, Canada (2005)Google Scholar
  9. 9.
    d’Amato, C., Fanizzi, N., Esposito, F.: A semantic similarity measure for expressive description logics. In: Pettorossi, A. (ed.) Proceedings of Convegno Italiano di Logica Computazionale (CILC 2005), Rome, Italy (2005)Google Scholar
  10. 10.
    d’Amato, C., Fanizzi, N., Esposito, F.: A dissimilarity measure for \(\cal ALC\) concept descriptions. In: Proceedings of the 21st Annual ACM Symposium of Applied Computing, SAC 2006, Dijon, France, vol. 2, pp. 1695–1699. ACM, New York (2006)CrossRefGoogle Scholar
  11. 11.
    d’Amato, C., Staab, S., Fanizzi, N., Esposito, F.: Efficient discovery of services specified in description logics languages. In: Proc. of the ISWC Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web (2007)Google Scholar
  12. 12.
    Baader, F., et al. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  13. 13.
    Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in owl-lite. In: de Mántaras, R.L., Saitta, L. (eds.) Proc. of the 16th Eureopean Conference on Artificial Intelligence, ECAI 2004, pp. 333–337. IOS Press, Amsterdam (2004)Google Scholar
  14. 14.
    Goldstone, R.L., Medin, D.L., Halberstadt, J.: Similarity in context. Memory and Cognition 25(2), 237–255 (1997)Google Scholar
  15. 15.
    Haykin, S.: Self-organizing maps: Neural networks - A comprehensive foundation, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)Google Scholar
  16. 16.
    Holyoak, K.J., Thagard, P.: Mental leaps analogy in creative thought. MIT Press, Cambridge (1995)Google Scholar
  17. 17.
    Hunter, J., Drennan, J., Little, S.: Realizing the hydrogen economy through semantic web technologies. IEEE Intelligent Systems 19(1), 40–47 (2004)CrossRefGoogle Scholar
  18. 18.
    Jaccard, P.: étude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)Google Scholar
  19. 19.
    Jang, J., Conrath, D.: Semantic metrics. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 166–181. Springer, Heidelberg (2006)Google Scholar
  20. 20.
    Janowicz, K.: Sim-dl: Towards a semantic similarity measurement theory for the description logic \(\mathcal{ALCNR}\) in geographic information retrieval. In: Meersman, R., et al. (eds.) OTM 2006 Workshops. LNCS, vol. 4278, pp. 1681–1692. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Janowicz, K., Keßler, C., Schwarz, M., Wilkes, M., Panov, I., Espeter, M., Bäumer, B.: Algorithm, Implementation and Application of the SIM-DL Similarity Server. In: Fonseca, F., Rodríguez, M.A., Levashkin, S. (eds.) GeoS 2007. LNCS, vol. 4853, pp. 128–145. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Kanungo, T., Mount, D.M., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Analysis and Machine Intelligence 24, 881–892 (2002)CrossRefGoogle Scholar
  23. 23.
    Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Mantay, T.: Commonality-based ABox retrieval. Technical Report FBI-HH-M-291/2000, Department of Computer Science, University of Hamburg, Germany (2000)Google Scholar
  25. 25.
    Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  26. 26.
    Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Transactions on System, Man, and Cybernetics 19(1), 17–30 (1989)CrossRefGoogle Scholar
  27. 27.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxanomy. In: Proc. of the Int. Joint Conf. for Artificial Intelligence (IJCAI 1995), pp. 448–453 (1995)Google Scholar
  28. 28.
    Resnik, P.: Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. Journal of Artificial Intelligence Research 11, 95–130 (1999)zbMATHGoogle Scholar
  29. 29.
    Tversky, A.: Features of similarity. Psycological Review 84(4), 327–352 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Claudia d’Amato
    • 1
  • Steffen Staab
    • 2
  • Nicola Fanizzi
    • 1
  1. 1.Department of Computer ScienceUniversity of BariItaly
  2. 2.ISWebUniversity of Koblenz-LandauGermany

Personalised recommendations