Skip to main content

Integration of Semantically Annotated Data by the KnoFuss Architecture

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 5268)

Abstract

Most of the existing work on information integration in the Semantic Web concentrates on resolving schema-level problems. Specific issues of data-level integration (instance coreferencing, conflict resolution, handling uncertainty) are usually tackled by applying the same techniques as for ontology schema matching or by reusing the solutions produced in the database domain. However, data structured according to OWL ontologies has its specific features: e.g., the classes are organized into a hierarchy, the properties are inherited, data constraints differ from those defined by database schema. This paper describes how these features are exploited in our architecture KnoFuss, designed to support data-level integration of semantic annotations.

Keywords

  • Domain Ontology
  • Training Instance
  • Application Context
  • Class Hierarchy
  • Ontology Match

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim, W., Seo, J.: Classifying schematic and data heterogeneity in multidatabase systems. IEEE Computer 24(12), 12–18 (1991)

    Google Scholar 

  2. Thor, A., Rahm, E.: MOMA - a mapping-based object matching system. In: 3rd Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA (2007)

    Google Scholar 

  3. Straccia, U., Troncy, R.: oMAP: Combining classifiers for aligning automatically OWL ontologies. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng, Q.Z. (eds.) WISE 2005. LNCS, vol. 3806. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  4. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  5. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. Journal of American Statistical Association 64(328), 1183–1210 (1969)

    CrossRef  Google Scholar 

  6. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A survey. IEEE Transactions on Knowledge and Data Engineering 19(1), 1–16 (2007)

    CrossRef  Google Scholar 

  7. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string similarity measures. In: 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2003), Washington, DC, pp. 39–48 (2003)

    Google Scholar 

  8. Rendle, S., Schmidt-Thieme, L.: Object identification with constraints. In: 6th IEEE International Conference on Data Mining (ICDM) (2006)

    Google Scholar 

  9. Jian, N., Hu, W., Cheng, G., Qu, Y.: Falcon-AO: Aligning ontologies with Falcon. In: K-CAP Workshop on Integrating Ontologies, Banff, CA, pp. 87–93 (2005)

    Google Scholar 

  10. Ehrig, M.: Ontology Alignment: Bridging the Semantic Gap. Springer, New York (2007)

    Google Scholar 

  11. Ehrig, M., Staab, S., Sure, Y.: Bootstrapping ontology alignment methods with APFEL. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 186–200. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  12. Lee, Y., Sayyadian, M., Doan, A., Rosenthal, A.S.: eTuner: Tuning schema matching software using synthetic scenarios. VLDB Journal 16, 97–122 (2007)

    Google Scholar 

  13. Nikolov, A., Uren, V., Motta, E., de Roeck, A.: Using the Dempster-Shafer theory of evidence to resolve ABox inconsistencies. In: Workshop on Uncertainty Reasoning for the Semantic Web, ISWC 2007, Busan, Korea (2007)

    Google Scholar 

  14. Motta, E.: Reusable Components for Knowledge Modelling. Frontiers in Artificial Intelligence and Applications, vol. 53. IOS Press, Amsterdam (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nikolov, A., Uren, V., Motta, E., de Roeck, A. (2008). Integration of Semantically Annotated Data by the KnoFuss Architecture. In: Gangemi, A., Euzenat, J. (eds) Knowledge Engineering: Practice and Patterns. EKAW 2008. Lecture Notes in Computer Science(), vol 5268. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87696-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87696-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87695-3

  • Online ISBN: 978-3-540-87696-0

  • eBook Packages: Computer ScienceComputer Science (R0)