Preference-Based Uncertain Data Integration

  • Matteo Magnani
  • Danilo Montesi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5268)


In this paper we present a novel uncertainty-enabled approach to data integration. Uncertainty is a natural by-product of many automatic data integration processes. In our approach we keep it up to the integrated database, and use it to improve query answering. Our method is based on the concept of preference: we show how preferences can be interpreted and manipulated to produce a global uncertain data source, and discuss the complexity of ranking query results on the integrated database.


Data Integration Uncertain Data Positive Preference Weak Preference Medium Preference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Magnani, M., Montesi, D.: Uncertainty in data integration: current approaches and open problems. In: VLDB Workshop on Management of Uncertain Data (2007)Google Scholar
  2. 2.
    Dong, X.L., Halevy, A.Y., Yu, C.: Data integration with uncertainty. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 687–698. ACM, New York (2007)Google Scholar
  3. 3.
    Magnani, M., Rizopoulos, N., McBrien, P., Montesi, D.: Schema integration based on uncertain semantic mappings. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 31–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    van Keulen, M., de Keijzer, A., Alink, W.: A probabilistic XML approach to data integration. In: ICDE (2005)Google Scholar
  5. 5.
    Nottelmann, H., Straccia, U.: splmap: A probabilistic approach to schema matching. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 81–95. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Nottelmann, H., Straccia, U.: Information retrieval and machine learning for probabilistic schema matching. Inf. Process. Manage. 43(3), 552–576 (2007)CrossRefGoogle Scholar
  7. 7.
    Pan, R., Ding, Z., Yu, Y., Peng, Y.: A bayesian network approach to ontology mapping. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 563–577. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Wang, Y., Liu, W., Bell, D.A.: Combining uncertain outputs from multiple ontology matchers. In: Prade, H., Subrahmanian, V.S. (eds.) SUM 2007. LNCS (LNAI), vol. 4772, pp. 201–214. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Nagy, M., Vargas-Vera, M., Motta, E.: Dssim - managing uncertainty on the semantic web. In: International Workshop on Ontology Mapping (2007)Google Scholar
  10. 10.
    Marie, A., Gal, A.: Managing uncertainty in schema matcher ensembles. In: Prade, H., Subrahmanian, V.S. (eds.) SUM 2007. LNCS (LNAI), vol. 4772, pp. 60–73. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Hunter, A., Liu, W.: Fusion rules for merging uncertain information. Information Fusion 7(1) (2006)Google Scholar
  12. 12.
    Gal, A., Anaby-Tavor, A., Trombetta, A., Montesi, D.: A framework for modeling and evaluating automatic semantic reconciliation. VLDB Journal 14(1), 50–67 (2005)CrossRefGoogle Scholar
  13. 13.
    Gal, A.: Managing uncertainty in schema matching with top-k schema mappings. Journal on Data Semantics VI, 90–114 (2006)Google Scholar
  14. 14.
    Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bipolar possibility theory in preference modeling: Representation, fusion and optimal solutions. Information Fusion 7(1), 135–150 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Matteo Magnani
    • 1
  • Danilo Montesi
    • 1
  1. 1.University of BolognaItaly

Personalised recommendations